Chapter 1

Practicum 1: Flux profile
calculations in the atmospheric
surface layer based on multi-level
measurement data

by Evgeni Fedorovich

1. Turbulence scalesin the atmospheric surface layer
Friction velocity, UD=(—U'V\/)1/2, whereu' and w' are, respectively, turbulent fluctuations of
the horizontal and vertical velocities and the b@ersignifies (Reynolds) averaging over the

ensemble of turbulent fluctuations, is employed tasbulence velocity scale in the
atmospheric surface layer (ASL) under the usual ASsumption that wind is directed along

the shear stress. The vertical variation of kinégemabmentum fluxu'w' (which is negative of

shear stress divided by density) is relatively $mdthin the surface layer. Thus)'w
characterizes the whole near-surface portion obthendary-layer flow and is usually regarded
assurface kinematic momentum flux.

Hereafter, the overbars will be omitted in the tiotafor mean (Reynolds-averaged) velocity,
temperature, humidity and associated meteorologeahbles.

Near-surface (vertical kinematic) turbulent fluxesheat and humidity are given by'&"

(where @' is the turbulent fluctuation of the potential teergture) andwv'q’ (whereq' is the
turbulent fluctuation of the specific humidity),spectively. They are used together with the
friction velocity to construct the surface-layeemperature and humidity turbulencescales:
6,=-w'8'/u; and g, = -wq'/u.. Changes ofw'@" and w'q’ with height in the idealized
(stationary and horizontally homogeneous) ASL flave relatively small and near-surface

values of both fluxes are considered representafitiee whole atmospheric surface layer.
In the ASL flow analyses, it is convenient to imtuge also the buoyancy turbulence scale

b, = —vv'_b'/uD, where buoyancy is defined asb=-(g/p.)(p-p.)=(9/8,)(E,-6,.)
and subscript denotes reference values of dengityand virtual potential temperatuég .



» Taking into account thaBw8,'=wb'=—ub.=- fub,,, where 8 = g/, is thebuoyancy
parameter, b, can be expressed in terms of the virtual potenéaiperature scalé,, as
b= 6,,. By using

-~uh=pAWE,'= w8 +0.61gw q =~ Aub, - 061gu,g,= U (56, + 061g0,)

it can further be expressed through the temperaanck humidity scales ab = £6,+0.619q,.

Since 3=9/6,. U g/8., it also follows from the above relationships tiéat=6,+ 0.616,q.

Y2 (for velocity), 8,,=-w8,'/ u,, (for virtual

* Summary of surface-layer scales: uD=(—u'_W’)
potential temperature),HDZ—V\/’_H'/ u, (for potential temperature),qDZ—V\/’_q'/ u, (for

humidity), andb, = —V\f_b'/uD (for buoyancy).

= Note that signs of temperature, humidity, and buoyastales are opposite to those of fluxes

and therefore coincide with signs of the corresfradertical gradients.
Underunstable (convective) conditions: w#§,'>0, 06,/0z<0, andg,,<O0.

w'b'>0, db/dz<0, andb.<0.

In thestable surface layer: wé,'<0,06,/0z>0, andg,,>0.
w'b'<0, db/0z> 0, andb>0.
Underneutral conditions: wé,'=0,06,/0z=0, andg,,=0.

w'b'=0, db/dz=0, andb=0.

2. The Monin-Obukhov similarity hypothesis;, Monin-Obukhov length
= Fundamental underlying assumption of the Monin-Qlawk hypothesis: az>>z; in the

atmospheric surface layer, the turbulence regimealbrscales of motion except for the

dissipation range depends only on distazcérom the surface and kinematic fluxes of

momentumu’' w = —uD2 and buoyancyw'b'= gw'6,'= -puf, = -ub,.
= The Monin-Obukhov hypothesis states that in the surface layer flowzat z, the vertical

gradients of (mean) meteorological variables, 8, g, andb as well as turbulence statistics
of these variables (turbulence moments) are uravdmctions of dimensionless height
when they are normalized by the corresponding seffayer turbulence scalesl{, 8,,, &,
g, and b, see above the definitions of these scales) amgthescald..

= This length scalel is called theMonin-Obukhov length. It is introduced (according to

fundamental assumption of the Monin-Obukhov theslge above) as a combination of the

surface momentum and buoyancy fluxes:
ub Uy (-u'w)
kw'b'  kBwW'q,'  KBW'E,'
= The Monin-Obukhov length can also be expressedring of surface layer scales as
2 2 2
— uD — uD uD

Kb, kP8, K(BE,+061gq)

= |nthe case of dry atmosphere:
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3. Universality of dimensionless gradients of meteorological variables

= According to the Monin-Obukhov hypothesis,
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Universal functionsp,, and ¢, of dimensionless heighf =z/L
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whereg.', ¢.', ¢,", ¢,,', and@,’ areuniversal functions of dimensionless heighf = z/L .
= The above relationships can be rewritten in thiefahg way:

UED%:Kfcbm'(z/L)zcbm(Z),
%%:Kfm (2IL)=4,().
qﬂugzkf% (2/1)=¢,(0).
% f’:zv =k, (21L)=4,,(0).
%%xfcﬁ;(z/usma,

where @, @, ¢, ¢, and @, are some other universal functions of the dimerie&s height
{=z/L.

* In the neutral surface layer (Wheldei - ), { =ZIL=0 andEg—uzl, and we have, (0) =1.
u, 0z

Heat and water vapor in this case are transpoggrhssive scalars and this transport should be

independent of. Therefore, corresponding universal functiafs, ¢q, ¢,,, and ¢, should
become constants. This yields logarithmic profigstemperature, buoyancy, and humidity

: i . : Kz 0u .
under (quasi-)neutral conditions in the ASL. Forstamce, _6_:1 integrates to
u, 0z

u=%nz+c.
K
= Measurements of the vertical gradientsip?, andq in the ASL generally support predictions
of the Monin-Obukhov similarity theory. Experimehttata suggest thap,, L ¢q . Examples

of measuredg,, and @, functions are shown in the plot from Sorbjan (1988produced
above.

N

. Empirical approximations of Monin-Obukhov universal functions

= A series of specialized surface-layer experimeatgheen conducted in the 1960s and 1970s

in different countries to prove/refute the Monin«®hov theory (or to determine limits of its
applicability) and to obtain analytical approxinuats for @ ({) and @, ({) .
= Numerous sets of analytical approximations for Manin-Obukhov universal functions have
been proposed. Two most commonly used sets are thfoBusingeret al. (1971) and Dyer
(Dyer and Hicks 1970, Dyer 1974), see correspondiferences in Sorbjan (1989).
Convective (unstable) surface layer (¢ =z/L <0).

1C



-1/4 -1/2
Busingeretal.: ¢ (z/L) = (1—158 . 6.(z/L) 20'74(1_98 | K=0.35.

-1/4 -1/2
Dyer: ¢, (z/L) = (1—16%) , @, (2/ L):(1—16fj , K =0.4 (originally, 0.41).
Stable surfacelayer (¢ =z/L = O).
Busingeretal.: ¢, (z/L) =1+ 47 , ¢,(z/L)=0.74+ 47E Kk =0.35.

Dyer: ¢..(z/L) =1+ 5%, @.(z/L) :1+5E, k =0.4 (originally, 0.41).

Note that Dyer's set provide§, =1, while Businger's set providé€s, =0.74.

5. Turbulent exchange coefficientsin terms of universal functions
= |n the ASL flow, kinematic fluxes of momentum andal are related to gradients of the
corresponding mean fields through the turbulent harge coefficients as

k(ou/0z) = —U'w = uDZ, wherek is the turbulent exchange coefficient for momentinis

often called eddy viscosity) and k,(06/0z) :—W'_H':uEﬁ*, where k,, is the turbulent

exchange coefficient for momentum (it is often edfiddy diffusivity).
= Combiningk(du/dz) = -u'w = uD2 andE% =¢,.({), we have:

u, 0z
= M2 =/(uDL—Z :
Pn({) Pn({)

which for the neutral conditiong/(=z/L=0) providesk (2)=ku_z.
» Using Dyer's expressions @, for unstable conditions and stable conditions @s®ve), we

have
kK (9=kuz(1-16z /L }'* forunstable conditions, { =z/L<0, and
KU Z
= for stable conditions, ¢ =z/L>0).
k@= 1+5z/L ¢ )

» Taking into account thak, (08/0z) = -Wé' = ug. and ?(2_9 =@, ({), see sectiong and
z

O
3, we obtain the following expression for the tuenitlheat exchange coefficient

k, (2= =KU DLL'
¢h(Z) $. (<)

= Note that becausep, ({)U @, ({) the turbulent exchange coefficient for humidity(2) is

approximately equal t&, (2).
= Interms of Dyer's universal functions:
k,(2=ku.z(1-16z /L }'* for unstable conditions,  =z/L<0, and

Z
h()'1+5 /L

= Note that under stable conditions, the considered ajmetions of the universal functions
provide equality of the exchange coefficients foomentum and heak, (2=k (z). Under

neutral conditions, wheg =z/L=0: Kk, (2=k (2)=ku_Z.

for stable conditions, { =z/L>0).
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= Based on the above relationships, the turbulemd@raumberPr=k/k, can be expressed in
terms of universal functiong,,({) and ¢, ({) as Pt ({)=¢,/¢,,. With Dyer's functions,
this providesPr (¢ )= (1-16z/L)™* in the unstable surface layef £z/L<0), andPr ({')=1
in the stable surface layef €z/L>0).

= Duetod, ({)l @,({), the turbulent Schmidt numb&g ({) =k/K, is approximately equal
to the turbulent Prandtl numbé&t ({').

* Notethat under neutral condition®r, (0)=Sq (0) =¢, (0)/¢,,(0) =C,,.

6. Relationships between Z/L and Richardson numbers
= Richardson numbers, specified as

Ri. = BwE,"  _ w'b’

" u'w'(Qu/dz) u'w'(du/az)

ri = 5(08,102) _ 0bl0z
(du/az)”  (u/o2)

(flux Richardson number) and

> (gradient Richardson number),

. k . Ri . . -
whereRi, = Rij :P—, characterize proportion between buoyancy andrslogdributions to the
k
turbulence kinetic energy production in a turbulémiv.
= The following sequence of  relationships is  worth of memorizing:

Pru Sc=¢,/¢.,=k/k,=Ri/Ri; .
= In terms of Dyer's functions, under unstable caods, whend =z/L<0: Ri=f=(§0 (because

#,=¢.°) and Ri,={(1-16] }'*<0; under stable conditions, when¢ €z/L>0):
Ri=Ri; =¢ /(1+5{) >0.

= Note that in the latter cas& =Ri/(L-5Ri) at Ri=0.2 corresponds to the infinitely large
positive ¢ (or infinitesimal positivel) that is the case of extreme stability when tughak

cannot exist. In other words, Dyer's approximaiaids the critical Richardson number value
Ri =0.2.

Exercise 1

1. Based org,, =@, , show thatp,, =@, =@, .

2. Obtain expressions RJ}Q“—ZE:&Z and Rif:%E:%Z taking into account that
m m m h

¢l ¢, andPr=9,/9,,.

3. Based on Dyer's universal functions, obtain ftiowing expressions fork and kh=kq as
functions of Ri:

k (9=kuz(1-16Ri)}"*, k,(9=kuz(1l-16Ri}'* for ¢ =zIL<0, RiO,

k (9=k, (2=kuz(1- 5Ri) for { =z/L>0, R0.

4. Expanding Dyer'sg . ({) and ¢,({) for { <0 in the Maclaurin series aroundl =0 and
neglecting terms of the order higher than 1, obtfaénfollowing approximations of,,({') and

$,({) for { <0 and|[{|<<1: ¢ ({) =1+4¢ and ¢, ({)=1+8( . Find values off <0, at
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which differences between the above linear apprations ¢,,({) and ¢, ({) and regular
Dyer's universal functions exceed 10%.

7. Integral forms of flux-profilerelationships
= The dimensionless gradients of velocity, tempesmtiand humidity, which are universal

functions of { =z/L, can be integrated over to obtain the explicit expressions of the
corresponding profiles.

* Integration of¢@, (z/L) _Kzou between levelsz, andz>z in the surface layer leads to the
O

following expression for the wind velocity profilai(z) =u(z) +ﬁ[ln£—¢/m(z,ﬁﬂ,
K Z L L
z 4
wherewm(f%j = 4,(¢.4.)=[[L-$(2/ L]dIn 2= [[1-4,()ldInS .
g &

= If the lower integration level is taken to be theface roughness height (length), where the
mean flow velocity is assumed to be zero, the wirptofile appears as

u(z):ﬁ Ini—t// E,i . The latter expression indicates that function
k| z ""LL

gl/m(—,—J:t//m(Z,Zo) describes the deviation of the velocity profilerfr the logarithmic

law due to the effect of atmospheric stability/aislity. It is commonly called thetability
correction function, or simplystability correction.

» In practical applications{, = z,/L in gl/m(Z,Zo) is often replaced by zero and the stability
correction is taken as$¥,({)=¢,,(¢,0), so that the velocity profile has the following

approximate form:
u(z) = ﬁ[mi - wm(iﬂ .
K| 1z L

= Dyer’s universal functiong, ({) provide (sedxercise 2)

2
w () =.2|n1L2X +lpitX

—2tan‘1x+g,wherex=(1—16()l’4, for { <0 (unstable

flow) and

W,(¢)=-5¢ for 4,()=1+5¢ for (20
(stable flow).

» Integration of the universal functiog, ({) between levelg, andz>z leads to

- Glnt_oylzz
0(2)=6(z) + p {In 2 wh(L’ Lﬂ and

_ Wl 2_,(22
q(z)—q(zl)+7{lnz %(L, Lﬂ

z 4
wherewh[f%]=wh(z,4)= [~ .2/ LldInz=[[1-$,(O)1dIn< .
4 &

13



» Using the concepts of roughness lengths for tenyperaand specific humidity {=6, at
Z=7,,, Q=(, atz= 7y, ), we can express the temperature and humidityl@scds

g +9 2y [Z % + O nZoy |2 B
49(2)—6?s+l({lnZo gl/h(L I_ﬂandq(z) g, + K{Inzo wh(L’LH'

4 q
= Approximate forms of these profiles are

0(z) =6, +9 [In——l-l-’ ( H and
K| Zy, L

QD _
0@ =q,+ K{ = w(LH,
where W, ({) =¢,({,0).

» If ¢,({) is taken after Dyer (see sectiot), the corresponding integral function is
+
‘Ph(Z):ZIany, where y=(l—16()1/2, for (<0 (unstable conditions) and

W, ({)=-5¢ for { 20 (stable conditions), setexer cise 2.

Exercise 2
1. Show that Dyer’s universal functiogs,({’) provide

2
W ()= 2|n1L2X s X

—2tan™ x+ 7—2-[ ,wherex=(1-16¢)"*,  for ¢ <0 (unstable

flow) and
W, ({)=-5¢ for ¢,({)=1+5¢ for (=0 (stable
flow).

2. Show thatg, ({) after Dyer provides¥, ({) =2In1+Ty, where y = (1—16()1/2, for { <0

(unstable conditions) an®, ({) =—5¢ for { =0 (stable conditions).

8. Calculation of surface fluxes from meteorological measurementsat two levels
= |n sections3 and 4 we obtained in following expressions, which reldéite surface layer

turbulence scalesl,, 8., and g, (and therefore, surface layer vertical kinematidbtlent
fluxes of momentum:wu'=-u’, heat: W& =-uf., and humidity: Wq' = -ug.) to

gradients of corresponding meteorological variables Eg—u:gbm(Z),
u, 0z

——=——=¢,({), where ¢ and @, are universal functions of dimensionless height

{=zlL. After Dyer, these functions may be approximatesl @ ()= (1-16)™"*,
$,(¢) = L-167)V? for £ <0 and,,(() =4, (¢) =1+5¢ for {20,

= Now imagine that we have mean (Reynolds-averagelljes ofu, T (absolute temperature),
andqg measured at two heights in the surface lagerand z,, with z,>z . This gives us three
pairs of quantities: \{, u,), (6=T,, 6,=T,), and @,, G,), where subscripts denote
corresponding measurement levels. We can also latdcfinite differences of these variables
across the layeAz=2z,-z: Au=u,-u,, A0=6,-6,,andAq=0, - q,.
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= We have to define a level betweel and z,, to which values of the finite gradients and

Ri :,BAZV?Z, where ﬂzi is the buoyancy parameter, can be referred tdim dase.
vC

Based on the fact that gradients of meteorologreaiables in the surface layer decrease fast
with distance from the surface (in the neutral dhsy decrease aszl/the reference level for

Ri is usually specified aZ, =4/zz, . It is also possible to take, =(z,—-2z)/In(z,/ z),
which is the height wherdu/Az=0u/0z in the case of perfectly logarithmic profilelease
demonstrate it yourself).

» The reference value of virtual potential tempemtfly, in [ = 9 may be taken constant, for

vC
instance,f,. =300 K.
= For calculation of actual (dynamic) turbulent flgxéwhich are expressed through their
kinematic counterparts ggw'u’, pc,w'6', and pw'q') we will also need the values of air

density p and specific heat at constant pressage=1004 J kg K'. Due to small vertical
variations of air density in the surface laygr,can be evaluated from(usually known) and

at one of measurement levels. For instgneep/(RT,), if we take temperature at the first
measurement level.

Flux calculation algorithm
1. The Richardson number at the reference l@yeas evaluated from the approximate relationship:

+

Ri( z,)= 'B(AQ/A?AU/OAE;;? @q /AZ), wherez, = \/Z

2. If Ri(z,)=0.2, further derivations make no sense becausegde of Ri is beyond the critical
limit.

3. If Ri(z,)<0.2, we proceed with calculation of dimensionleseght { =z /L that is related to

Richardson number RE, ) as
{=Ri(z,) if Ri( z,)<0 (unstable stratification) and

{=Ri(z,)/[1-5Ri(z,)] if Ri(z,)>0 (stable stratification), see section
6.
4. From {,, the value of Monin-Obukhov length scdlecan be calculated ds=z,/{. In the

present algorithm, is a supplementary parameter.
5. The calculated’, enters the expressions of the universal functippsand @, :

$n({s) = @-167,) " if Ri( z,)<0 (unstable), @, ({.) =1+5¢,
if Ri( z,)>0 (stable);
$,({) = (1-160)"? if Ri( z,)<0 (unstable), @, (¢,) =1+5¢,,

if Ri( z,)>0 (stable).
6. From the universal function, we calculate thdase layer turbulence velocity, temperature, and

kz, Au __KZ A_H andq, = KZy % wherek =0.4

AV NIAWY: #,((.) Oz

is the von Karman constant.

humidity scales fronu, =
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7. The kinematic surface turbulent fluxes are dated from u,, 8., and q, as vv'u':—uD2

(momentum), W &' = -u-g, (heat), and/v'_q' = -u.0, (humidity).
8. Finally, we obtain the surface vertical turbuléoxes of momentumpw'_u', heat, pch'H',

and humidity,,oV\/_q'.

Exercise 3
You are given four datasets with mean velocity, gerature, and specific humidity values
measured at two levels in the atmospheric surtager|

Set 1. Measurement levelg, =0.5m andz,=2m. Data:u, =3m/s, u,=4m/s, T, =36°C, T, =29°C,
0,=0.008, g, =0.003, p, =1000hPa.

Set 2. Measurement levelg, =2m and z,=8m. Data:u, =4m/s, U,=8m/s, T, =20°C, T,=22°C,
,=0.004, g, =0.006, p, =1000hPa.

Set 3. Measurement levelg, =1m and z,=4m. Data:u,=3m/s, u,=6m/s, T, =15°C, T,=15°C,
,=0.009, g, =0.009, p, =1000hPa.

Set 4. Measurement levelg =4m and z,=9m. Data:u,=2m/s, u,=3m/s, T,=—2°C, T,=8°C,
0,=0.001, g, =0.005, p, =1000hPa.

For each of the above datasets (as long as phyisiittions allow):

a. Determine class of stability (unstable, stabtejeutral), and evaluate corresponding valuie; of

b. Calculate the surface layer turbulence scaldstaulent fluxes of momentum, heat, humidity,
and buoyancy;

c. Find values of turbulent exchange coefficiemts rhomentum,k, and heatk,, and calculate
turbulent Prandtl number &, = /72, ;

d. Calculate mean wind velocity, temperature, gretsic humidity atz, andz=10m.

9. Calculation of surfaceturbulent fluxesin the case of non-coinciding measurement levels
= In this case, we have mean valuesi0f (absolute temperature), agdneasured at following

levels:u,, u, at z,, z,, (2,>2z,), T, U 6, T, 6, at z,, z,, (Z,,>2,), andq,, g, at
Zys Zyp (242> Zy)-

= Like in the previously considered case of two-lev@leasurements (see secti@),
Cp=1004JEkg'1[IK'1, atmospheric pressure is assumed to be known, tleemdbuoyancy

parameter isf = g/ 8, with §,,=300 K. Note that, like in the previous case, this is only one
of several possible ways of evaluati#}}. in this case. The air density can be calculated as
p=pl(RT).

Flux calculation algorithm
1. In a first approximation, the profiles af &, andq in the surface layer may be taken logarithmic.

. . u 6, z
Thus, we may express the increments of variablas,asy, = Wi 2 6,-6 =—In-t2,
Zu K Zy
and g, —q, :%Inﬁ. These expressions provide first approximationsttie surface layer
K Z

gl
turbulence scales,, 8-, and .
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2. Based of the calculated turbulence scales, thmniMObukhov length is evaluated as
2
L= Uy .
k(56,+ 0619q,)
3. If z/|L|<<1, wherez, is the highest measurement level of the threg,(z,,. z,,), the

stratification of the surface layer may be con®deneutral. One make take, for instance,
z,/|L|=0.01 as the lowest limit for the non-neutral casier that, the kinematic fluxes can

be directly evaluated from scales, 6., and g, as wu'= —uD2 (momentum),w @' = -uf,
(heat), andw'q’ = —u.g, (humidity).
4.1f z,/|L|>0.01, we have to calculate new approximations,afé,, and g, from

1 .

aei[l_w(%jw(ﬂ
K Z5 |

oW ey (Z2) g [Za)]
0,-q K{Inqu wh(Lj*—wh(Lj_

taking into account the sign bfand using appropriate integral functions from isect.

u2

0
k(B6,+ 061g9q,)
6. Steps 4 and 5 are repeated until the relatifferdnce between new and old valued dfecomes
reasonably small (let say, of the order of 0.01)

7. Based on the resulting values of, 8,, and g, the turbulent fluxes are calculated using

5. With new scalesl,, §,, and g, we calculate new approximation flor

vv’_u'=—u52, W'_3'=—UDHD, and vv’_q'=—quD, and then multiplying kinematic fluxes by
c,=1004)kg™ (K™ and p.
8. Finally, velocity, temperature, and humidity aty levelz within the surface layer can be

obtained from
u(z) =y, +ﬁ{lni - Wm(ij + Wm(ij
K| z, L L]

st tlnd (o]

) L L

—a+3nltoyw (2 L
Q(Z)—Ga"'/({ln 7 LPhL_j'“’”h( LJ_'

Note that for such evaluation one can use velocity,penature, and humidity values from any
measurement level (for instanag,, &,, and g, along with corresponding measurement levels

may be used instead of, &, andq,).

10. Retrieval of surfaceroughnesslength values from the gradient measurements
= In the case, when the lower measurement levelseisairface layer are taken as (or assumed to

be) roughness heights (lengthg),=7,, z,=%,, Z,=2%,, at which, according to the
definitions of roughness lengths, the meteoroldgieaiables reach their surface valugs0,
9=HS, and q=d,, the flux-profile relationships can be written as
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u@a=%{m%5~m«m+WAaﬂ,

(7]
6(z,,) = 6, +7D[|nﬁ “W({g) + th(Zoe)} ,
g
0(22) = 6+ L I 72— W, (7,)+ W, (Z4y) |
K Z,
= These expressions can be used for calculationrédcmilayer turbulence scales and turbulent
fluxes from meteorological measurements at a sifeylel in the surface layer. However, for

such calculation we need values Bf, z,, z,, 6, and g, which generally are not very

easy to obtain.

* On the other hand, given the surface values of éeatpre 8, and humidity g,, as well as
velocity, temperature, and humidity turbulence ssgbetermined, for instance, from the two-
level measurements in the surface layer), the abapeessions can be used for evaluation of
surface roughness lengtls, 7y, and z,, .

Exercise 4
You are given two sets of meteorological variabfesasured at different levels in the atmospheric
surface layer.

Set 1. Measurement levelg;, = Z, =7, =0.5m andz,,=z,,= 7,,=2m. Data:u, =3m/s, u,=4m/s,

T,=36°C, T, =29°C, q,=0.008, ¢, =0.003, p,, =1000hPa. For this dataset:

a. Calculate the surface turbulent fluxes employivegalgorithm described in sectién

b. Estimate mean velocity, temperature, specifimidity, turbulent exchange coefficients, and Ri
atz=10m.

c. Compare results with your calculations for tle¢ BinExercise 3.

Set 2. Measurement levelsz,=1m, z,=27,=2m, z,=8m, Z,,=7,=6m. Data: u,=2m/s,

u,=8m/s, T, =8°C, T, =11°C, g,=0.004, g, =0.006, p,, =1000hPa. For this dataset:

a. Calculate the surface turbulent fluxes employiregalgorithm described
b. Estimate mean velocity, temperature, specifimidity, turbulent exchange coefficients, and Ri
atz=10m.
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