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https://www.ecmwf.int/en/about/media-centre/focus/2021/fact-sheet-earth-system-
modelling-ecmwf

Why Multiscale Data Assimilation (MDA)

q In addition to the atmosphere, 
ocean, sea ice, and the land 
surface etc can have a 
significant impact on weather.

q These earth system components 
have intrinsically different 
spatial and temporal scales.

q Accurate numerical weather 
prediction requires proper 
initialization of these multiscale
earth system components and 
their interaction (coupling) 
through data assimilation.
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__ SST Obs
__ SAT Obs

https://en.wikipedia.org/wiki/Hurricane_
Fiona

Why Multiscale Data Assimilation (MDA)

• Proper initialization of earth system components and their interactions (coupling) through MDA not 
only applies for e.g. S2S prediction, but also for short term prediction. 

Saildrone.com

Lu* and Wang et al. 2023b
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Why Multiscale Data Assimilation (MDA)

• The atmosphere, as one earth system component, itself is intrinsically multiscale as well, housing 
micro to planetary scales.

• Accurate prediction of storms (e.g. hurricanes, squall lines, supercells) require DA to initialize not 
only the storm but also its larger scale environment.

Wang* and Wang, 
2023b
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Why Multiscale Data Assimilation (MDA)

qDeep convective systems have larger 
vertical correlation length scales than 
the mean atmospheric state (e.g., 
Ingleby 2001)

qMean tropical atmosphere has smaller 
vertical correlation length than 
extratropics (e.g., Rabier et al. 1998)

Jones* and Wang 2023b
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Why Multiscale Data Assimilation (MDA)

• Different variables can have intrinsically different scales.
• Considering intrinsic scale differences of variables are important for storm scale prediction (Wang, 

Y.* and X. Wang 2023) 

Wang* and Wang 
2023a

g/kg

L

Dryline



7

[https://www.weather.gov/media/lmk/soo/Su
percell_Structure.pdf]

Why Multiscale Data Assimilation (MDA)

Convective scale static B
Wang Y.* and X. Wang 2021

• Control variables and intrinsic “balance” are different between large scales and convective scales
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Why Multiscale Data Assimilation (MDA)

Yang* and Wang 2023

Non-Guassianity

• Degrees of Non-
Gaussianity/Non-linearity may 
be scale dependent

KLD

Reflectivity

Reflectivity

Vertical velocity



MDA definition and challenges
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q The next generation data assimilation 
system is required to effectively analyze 
the state and quantify its uncertainty 
across multiple scales, termed as 
“multiscale data assimilation (MDA)”.



OU MAP Lab current MDA efforts

qMDA methodology development
• Develop new simultaneous MDA algorithm/solver: e.g. MLGETKF 

(Wang, X. et al. 2021)
• Develop methods to address ensemble deficiency for simultaneous 

MDA 
ü Scale dependent inflation (SDI, Xu* et al. 2023)
ü Scale dependent horizontal localization (SDL, Huang* et al. 2021, Lu* and 

Wang 2023)
ü Scale dependent/flow dependent vertical localization (vFDL, Jones* and 

Wang 2023b)
ü Variable dependent localization (VDL, Wang* and Wang 2023a)
ü Multi-resolution (MR) background ensemble (Kay* and Wang 2020, Jones* 

and Wang 2023a)
ü Optimizing coupled earth system component covariances, e.g. air-sea 

coupling for TC (Lu* et al. 2023)



OU MAP Lab current MDA efforts

qR&D of MDA for real NWP applications in US NOAA DA systems 
• MR and SDL for GFS 4DEnVar (Kay* and Wang 2020, Huang* et al. 2021, 

Jones* and Wang 2023a)
• SDLVDL for HRRR/RRFS and WoF EnVar (Wang* and Wang 2023ab)
• SDL for HAFS EnVar (Lu* and Wang 2023)
• Coupled DA for HAFS-MOM6 (Lu* et al. 2003)

GFS: US operational global model
HRRR/RRFS: US current and next generation convection allowing DA and modeling system over CONUS 
HAFS: US next generation convection allowing hurricane DA and modeling system
WoF: US experimental DA and modeling system for tornado, severe thunderstorm, etc



q Hybrid 4DEnVar (Wang and Lei* 2014) 
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q Multi-resolution ensemble (Kay* and 
Wang 2020) hybrid 4DEnVar
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single-res ensemble

low-res ensemble

high-res ensemble

Single-scale localization

Large localization radius applied 
for low-res ensemble

Small localization 
radius applied for
high-res ensemble

Part I: A Multi-Resolution (MR) Ensemble 4DEnVar for GFS
Kay* and Wang, 2020; Jones* and Wang, 2023a



Analysis Increment Power Spectrum

MR170 
makes similar or 

slightly smaller adjustments 
in smaller scales

MR170 
makes larger 

adjustment in larger
scales

Jones* and Wang, 2023a



Impact on GFS forecast RMSE from cycled NH summer 
month long experiment
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Error calculated using ERA-Interim as verification. Purple asterisks indicate 95% confidence using a paired t-test.  

MR170 improves global forecast 
compared with SR-High up to 5 days

Improvement at longer lead times
is most notable in the Southern Hemisphere

Improvement at early lead times
is most notable in the Tropics



250 hPa Wind Speed and Difference in Total Energy Error

Analysis time: 0000 UTC on 12 September 2017. Cyan contours indicate the 5% maximum improvement of total energy 
error filtered to include wavenumbers 5 to 25 for MR170 compared with SR-High

At analysis time, largest
MR170 improvement
in the tropics and SH 

subtropics

Largest area of improvement
in region typically 

associated with Tropical
Easterly Jet

Why Multi-Resolution (MR) Ensemble 
4DEnVar helps?



Analysis time: 0000 UTC on 12 September 2017. Cyan contours indicate the 5% maximum improvement of total energy 
error filtered to include wavenumbers 5 to 25 for MR170 compared with SR-High

Largest MR170 
improvement shifts

to extratropics,
especially in SH

Largest areas of improvement
tend to occur in regions

influenced by jet 
interactions 

Why Multi-Resolution (MR) 4DEnVar helps?
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q In the operational 4DEnVar, horizontal 
localization functions  are scale-invariant 
at each level

q A simultaneous multiscale DA using scale 
dependent localization (SDL, Buehner and 
Shlyaeva 2015) in 4DEnVar for NCEP 
FV3-based GFS is implemented

Part II: Simultaneous MDA with scale dependent 
localization (SDL) in GFS and HAFS 4DEnVar

Huang* et al. 2021, Lu* and Wang 2023
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• ensemble perturbation 
scale decomposition; 

• scale dependent and 
cross scale covariance  
localization
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(a) Temp Inc. Power at 500 hPa
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Temp
at 500 hPa

q By comparing W1 experiments, wider localization length results in larger analysis 
increment power.

q As expected, analysis increment power in W2-NoCross and W2-Cross is closer to W1-
1000 (W1-300) at small (large) total wavenumbers -> MDA with SDL can simultaneously 
update large and small scales

Wind
at 500 hPa

Analysis Increment Power
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RMSE difference (blue/redà improvement/degradation relative to W1-Ope)
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q MDA with SDL improves 
global forecasts almost at all 
pressure levels over 
operational approach. 

q NOAA pre-implementation 
test shows similar global 
forecast improvement (Kleist 
et al. 2023)
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(g) W2-NoCross Wind
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Near Storm V Inc

Environmental Subtropical High western edge V Inc

Simultaneous MDA with SDL in HAFS 4DEnVar

p The simultaneous MDA with 
SDL is recently further 
extended and implemented 
for HAFS EnVar

p MDA with SDL can 
simultaneously properly 
correct both the TC and its 
large scale steering 
environment (subtropical 
high)

~180-km SSL ~1600-km SSLSDL

Lu* and Wang 2023a



Impact on convection allowing hurricane forecasts
Mean Absolute Forecast Errors during Hurricane Laura (2020)

Ø Localization Impacts on Forecasts
o 4DSDL outperforms 4DL and 4DS in intensity predictions

o 4DSDL outperforms 4DS in track prediction and has mixed results compared to 4DL

a) Vmax b) MSLP c) Track



Impact of Simultaneous Multiscale DA
6-h Background Forecast Verification against Dropsonde & Rawinsonde

ØMDA produces 
better background 
than SSL in both 
vortex scale and 
TC environment.

 ̶ ̶ 4DS
 ̶ ̶ 4DL
 ̶ ̶ 4DSDL

Dropsonde
(Inner-core)

Rawinsonde
(Environment)

U V T Q



Courtesy of EUMETSAT

q Areas identified for larger vertical localization lengths tend to be within:
• Tropical cyclones
• Frontal regions
• Broad polar regions

Part III: Simultaneous MDA with flow dependent 
vertical localization (vFDL) for GFS 4DEnVar

Jone* and Wang 2023b



Hurricane Irma (2017) Composite Localization
and Difference in RMSE Cross Sections

Largest differences in RMSE tend to occur
at ~200 hPa and in inner core at all levels

Most impact regions correspond with areas 
Identified for increased vertical localization

vFDL-OPE



vFDL improves TC
track forecast up to 5 days
in lead time with greatest 
improvement in first 54 h

Tracking algorithm by Marchok (2002). Numbers above the x-axis denote how many tracks at each lead time. Filled
dots indicate 95% confidence using a paired t-test.  

Impact on month long GFS hurricane track 
forecasts

• Flow-dependent vertical localization 
show promises to improve GFS 
hurricane track forecasts 

• Improved initial position leads to impro
ved forecasts for the first 72 h

• Large scale improvement in zonal wind 
leads to improvement after 72 h
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Analysis increments of wind (vector) and v-wind (shaded) through 
assimilating a single observation of Vr with an innovation of -30 m/s at 
1 km AGL.

• MDA with SDL can 
simultaneously properly 
correct both the supercell 
storm and its ambient 
environment, which represent 
different scales

Part IV: Simultaneous MDA with scale and variable dependent 
localization (SDLVDL) for WoF & HRRR/RRFS EnVar

Wang* and Wang 2023ab

Wang, Y.* and X. Wang 
2023a
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Wang X. et al. 
2021. MLGETKF

• Using VDL with an appropriately smaller localization for q greatly
reduces intensity and coverage of moisture increments compared
to using SDL only.

Impact of including VDL in MDA

Overestimated q in 
Exp-SDL

SDLVDL (Wang, Y* and. X. Wang 2023a)
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Impact on supercell forecasts
(Reflectivity @ 1km AGL)

Ø Compared to Exp-SSL, Exp-SDL and Exp-SDLVDL improve the forecasts for the forward-flank 
distributions;

Ø Exp-SDLVDL has less spurious storms and further enhances supercell than Exp-SDL



Experiment design (HRRR/RRFS)
Model and DA configuration
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Model options Specification

Grid size and resolution 1621×1121×51; 3 km

Microphysics Thompson

PBL MYNN

Radiation RRTMG

Land surface model Noah

Wang, Y.* and X. Wang 2023b



30FSS and NETS for composite reflectivity

Ø For composite reflectivity forecast, 
Simultaneous_MDA outperforms 
Baseline in the majority of forecast 
leading time.

Impacts of SDLVDL in EnVar on RRFS/HRRR 
forecasts

Wang Y.* and X. Wang 2023b
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Sim._MDA MDA_RA         MDA_CONV

Ø Compared to Baseline, 
• MDA has stronger cold pools and enhanced 

east-southeastern inflow;
• MDA produces greater convergence along the 

front and larger moisture gradient along the 
dryline.

Ø Additional experiments revealed such 
improvements are due to the effectiveness of 
MDA to correct multiple scales when 
assimilating radar or meso/synoptic in-situ 
observations alone

Analysis differences with Baseline

q

t

Stronger 
cold pools

Enhanced 
inflow

Larger moisture gradient

Greater convergence along the front

Understanding the impact of Simultaneous_MDA on 
RRFS/HRRR forecast



#1031 

#1040 

Cycle Starts Cycle Ends

a) b) c)

Part V: coupled ocean-atm DA for TC

l Dropsonde
l AXBT
l SailDrone

X

Finoa 2022

Lu* and Wang et al. 2023b



a) Wind b) T c) Q

PBL (975mb)

Model Performance Verification
Azimuthal Verifications of PBL Structures from Dropsondes

• CTL experiment matches the dropsonde observations reasonably well.

• CTL performs even slightly better than the HAFS-A operational run in 2022.



a) Saildrone #1031 (smoothed) b) Saildrone #1040 (smoothed)

__ SST Obs
__ SAT Obs
__ SST CTL 6H
__ SAT CTL 6H

ü Low bias in both SAT and SST from the model

Model Performance Verification
Air-Sea Interface verifications from SailDrones



ü Slight negative 
model biases still 
exists in both air 
and sea.

__ CTL
__ Drop T

__ CTL
__ AXBT T

Individual Sites

Model Performance Verification
Air-Sea Interface verifications from Drops + AXBT

T

Avg @ 1.75-2.25 RMW

__ CTL
__ OBS



Part VI: MLGETKF and Scale Dependent Inflation

36

q A new ensemble-based, multiscale data assimilation 
(MDA) method, MLGETKF (Multiscale Local Gain Form 
Ensemble Transform Kalman Filter, Wang et al. 2021), 
was developed.

q MLGETKF reduces analysis and background errors 
relative to scale unaware LGETKF for all scales, 
especially towards the large scales.

q The same study also reveals that the common issue of 
background ensemble under-sampling can be scale 
dependent

Wang, X. et al., 2021, Xu* et al, 2023

Consistency ratio
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Methodology
Scale dependent RTPS inflation (RTPS-SDI)

Naicheng Xu Thur. poster

q The RTPS inflation (Whitaker and Hamill 2012) relaxes the posterior spread 
toward the prior spread

• Inflation factor 𝒈 = 𝛼 ∗ 𝑷𝒃" 𝑷𝒂

𝑷𝒂
+ 1

q In this study, RTPS is further developed and implemented separately for 
different scales (hereafter “RTPS-SDI”)

• Inflation factor 𝐠# = 𝛼# ∗
𝑷𝒎𝒃 " 𝑷𝒎𝒂

𝑷𝒎𝒂
+ 1
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Methodology
Scale dependent inflation based on sampling error (SE-SDI)

q Hodyss et al. (2016), using the ensemble Kalman filter theory, derived a posterior inflation that accounts 
for the  sampling error deficiency (hereafter “SE” inflation)

• 𝑺 ≈ a ∗ 𝑷! + 𝑷-

𝑷.
#
𝑏 𝑷

.

$/
+ 𝑐 #

$/%&
𝒙! − 𝒙'

#
Inflation factor: 𝒈 = 𝑺

𝑷-

q Scale dependent SE inflation (hereafter “SE –SDI” inflation):
• Starting with the multiscale analysis equation (equivalent to MLGETKF if assuming no cross scale 

covariance), rederive SE inflation for different scales of analysis

• 𝑺) ≈ 𝑎)𝑷)! + 𝑷0-

𝑷0.
#
𝑏)

𝑷0.

$/
+ 𝑐)

#
$/%&

𝒙)! − 𝒙)'
#

Inflation factors: 𝒈) = 𝑺0
𝑷0-

Additional analysis error due to limited ensemble 
members, i.e., sampling error
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Experiment Design

q SQG turbulence model follows Tulloch 
and Smith (2009) and mimics mesoscale 
of the atmosphere 

q The four inflation methods are 
implemented on MLGETKF (Wang X. et 
al. 2021)

q Simulated obs.: potential temperature on 
both model surfaces with a standard 
deviation of 1K

q Ensemble size: 20-member 

q 3-hourly data assimilation is performed 
for 400 cycles

Exp. Name Description
RTPS Use RTPS for MLGETKF posterior inflation (Wang X. et al. 2021)

RTPS-SDI Use scale dependent RTPS for MLGETKF posterior inflation

SE Use sampling error (SE) derived inflation for MLGETKF posterior 
inflation

SE-SDI Use scale dependent SE inflation for MLGETKF posterior inflation 
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Development of scale dependent inflation (SDI) methods
Xu* et al. 2023

q Both SDI methods show improved analysis 
accuracy across all resolved scales relative to 
their own scale independent inflation counter 
parts.
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Temporal and spatial behaviors of the inflation

SE SE-SDI-large SE-SDI-small

RTPS RTPS-SDI-large RTPS-SDI-small

• In the two SDI 
experiments, the inflation 
factors at large and small 
scales reflect the 
corresponding scale 
structure.



42

Summary and Remarks

q Great challenges exist to achieve effective multiscale DA for next generation NWP
• Individual earth system component (e.g. atmosphere)
• Coupled earth system components 

q R&D on simultaneous MDA performed using operational model and DA system, including GFS, 
RRFS/HRRR, HAFS, WoF, demonstrate great potential of such approach to better utilize observations 
and to improve NWP

q Examples of research on MDA methodology development are introduced
• A new MDA solver (MLGETKF)
• New methods to treat ensemble deficiency in MDA

q Fundamental research is needed to address challenges associated with the multiscale DA for all 
NWP applications: short range, medium range and S2S predictions
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Simultaneous Multiscale DA

44

s

qA simultaneous multiscale DA approach, as opposed to a sequential approach, allows 
all observations to correct all resolved scales at once (Wang X., 2021).

Increment for scales 
>4000km

Increment for scales < 
4000km

Huang*, Wang et al. 2021

• A single obs. can 
correct multiple 
scales in 
simultaneous MDA

• Simultaneous 
multiscale DA also 
defines cross scale 
band error correlation 



Implementation of SDLVDL within EnVar
scale decomposition

45

• A diffusion operator is applied 
to decompose scales for each 
ensemble perturbation.

• Uncertainty of the storm and 
small-scale low-level 
convergence are mostly 
concentrated at the 
decomposed small scale.

• Uncertainty of the 
environment-related fields are 
reflected by the large scale.

dBZ

u



Exps Assimilation 
Strategy Localization scales

Baseline 
(Ope.-like)

Separate assimilation 
of in-situ and radar 
obs.

In-situ obs. 300 km 
Radar obs. 15 km

Simultaneous_MDA
Simultaneous 
assimilation of in-situ 
and radar obs.

Small scale
15 km: hydrometeors, and w
60 km: u, v, t, q, and ps

Large scale
60 km: hydrometeors, and w
500 km: u, v, t, q, and ps

Experiment design
Model and DA configuration

46

Baseline Simultaneous_MDA
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Key aspects of the algorithm

48

• Rapid creation of many pseudo ensemble perturbations in a local volume via a multiscale ensemble 
modulation procedure. 

• The modulated ensemble intrinsically includes multi-scale model space localization and is used to 
update ensemble mean and perturbations.

• Multi-scale model space localization adopts scale-aware localization.  In addition, localization of the 
ensemble covariances between different scales are defined and can be further modulated. 

• MLGETKF only updates and propagates the original number of ensemble members.

𝐙$% = 𝐳&, 𝐳', ⋯ , 𝐳($% = 𝐈 𝐈 ⋯ 𝐈 𝐗$)∆ 𝐋𝑴𝑺
&
'

Modulated/expanded pseudo 
ensemble perturbations

Scale decomposed raw 
perturbations

Multiscale model space 
localization 
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RMSE difference between 
W2-Cross and W2-NoCross
(blue/redà better/worse 
forecasts in W2-Cross)

q W2-NoCross shows slightly better forecasts than W2-Cross within 
one day. This  may benefit from the spatial averaging of ensemble 
covariances in W2-NoCross. 

q Beyond one-day, W2-Cross in general shows more accurate 
forecasts than W2-NoCross, likely contributed by its higher 
degrees of retained heterogeneity of ensemble covariances and 
resultant analysis, and its more balanced analysis through 
partially including cross-waveband covariances. 
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Multiscale vs Single scale ensemble based DA
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(b) W1-1000

(d) W1-300

(e) W2-NoCross (f) W2-Cross
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Huang*, Wang et al. 2021

Single large Single small Multiscale (MDA)

Physical space visualization
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Analysis error in physical space

q MLGETKF not only shows skill in decreasing the small scale component of the analysis errors, but 
also is effective in suppressing the development of large scale, dynamical, high-amplitude analysis 
errors 

Wang X. et al. 2021


