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ABSTRACT

Radar data–based analysis products, such as accumulated rainfall maps, dual-Doppler wind syntheses, and

thermodynamic retrievals, are prone to substantial error if the temporal sampling interval is too coarse.

Techniques to mitigate these errors typically make use of advection-correction procedures (space-to-time

conversions) in which the analyzed radial velocity or reflectivity field is idealized as a pattern of unchanging

form that translates horizontally at constant speed. The present study is concerned with an advection-

correction procedure for the reflectivity field in which the pattern-advection components vary spatially. The

analysis is phrased as a variational problem in which errors in the frozen-turbulence constraint are minimized

subject to smoothness constraints. The Euler–Lagrange equations for this problem are derived and a solution is

proposed in which the trajectories, pattern-advection fields, and reflectivity field are analyzed simultaneously

using a combined analytical and numerical procedure. The potential for solution nonuniqueness is explored.

1. Introduction

A longstanding problem in radar meteorology and

hydrology is the sensitivity of radar data–based analysis

products to the temporal sampling interval1 (volume

scan time). Successive volume scans of radar data are

used to generate accumulated rainfall maps (e.g., Austin

1987; Fabry et al. 1994; Liu and Krajewski 1996; Fulton

et al. 1998; Anagnostou and Krajewski 1999; Tabary

2007; Gerstner and Heinemann 2008; Islam and Rasmussen

2008; Villarini and Krajewski 2010), wind vectors from

single-Doppler velocity retrievals (e.g., Tuttle and Foote

1990; Sun and Crook 1994, 2001; Laroche and Zawadzki

1995; Shapiro et al. 1995, 2003; Zhang and Gal-Chen

1996; Liou 1999; Liou and Luo 2001; Lazarus et al. 2001;

Gao et al. 2001; Xu et al. 2001a,b; Caya et al. 2002),

multiple-Doppler wind and vertical velocity analyses

(e.g., Clarke et al. 1980; Miller and Kropfli 1980; Ray

et al. 1980; Gal-Chen 1982; Chong et al. 1983; Mohr

et al. 1986), multiple-Doppler thermodynamic retrievals

(e.g., Gal-Chen 1978; Hane et al. 1981; Roux 1985;

Parsons et al. 1987; Sun and Houze 1992; Crook 1994;

Liou 2001), and multiple-radar merged reflectivity

analyses (Germann and Zawadzki 2002; Lakshmanan

et al. 2006; Langston et al. 2007; Yang et al. 2009). Many

of these algorithms are prone to substantial error if
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1 Operational weather radars such as the Weather Surveillance

Radar-1988 Doppler (Crum and Alberty 1993; Klazura and Imy

1993) or Terminal Doppler Weather Radar (Michelson et al. 1990;

Vasiloff 2001; NOAA/NWS 2005) typically scan a preset sequence

of 3608 conical surfaces comprising a volume of the atmosphere

every 4–10 min. Research weather radars such as the Phased Array

Radar (PAR; Zrnic et al. 2007; Lu and Xu 2009), the Shared Mo-

bile Atmospheric Research and Teaching Radar (SMART-R;

Biggerstaff et al. 2005) and the Doppler-on-Wheels (DoW;

Wurman et al. 1997) have more flexible sampling strategies that

can provide volume updates on the order of a minute over limited

azimuthal sectors.
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advection effects are not adequately accounted for or

if the evolution time scale is comparable to (or smaller

than) the temporal sampling interval, as might occur

when a convective storm undergoes rapid changes in

size, shape, or intensity.

Attempts to mitigate analysis errors arising from the

nonsimultaneity of the data collection have largely fo-

cused on the advection problem. Advection-correction

procedures are based on the hypothesis that, for suffi-

ciently short time intervals, small-scale features can be

idealized as patterns of unchanging form that translate

horizontally (the frozen-turbulence hypothesis; Taylor

1938). In most applications, the Cartesian advection

components U and V are treated as constants within an

analysis domain or subdomain and are used to spatially

shift nonsimultaneously gathered data on an observa-

tional grid to an analysis grid at a common analysis time.

Equivalently, a moving reference frame is introduced in

which the analysis is performed.

A variety of techniques have been used to estimate U

and V. They have been obtained subjectively, by visually

tracking echo cores or shear lines (Heymsfield 1978;

Carbone 1982; Austin 1987; Dowell and Bluestein 1997),

and objectively, by cross-correlation analysis (Zawadzki

1973; Austin and Bellon 1974; Mohr et al. 1986; Anagnostou

and Krajewski 1999, Gerstner and Heinemann 2008), by

minimizing a cost function in which the frozen turbu-

lence hypothesis or a related hypothesis is imposed as

a weak constraint (Gal-Chen 1982; Chong et al. 1983;

Shapiro et al. 1995; Zhang and Gal-Chen 1996; Liou

1999; Liou and Luo 2001; Lazarus et al. 2001, Matejka

2002; Dowell and Bluestein 2002), and by determining

the reference frame that yields the most dynamically

consistent pressure and buoyancy fields in a thermody-

namic retrieval (Hane 1993). Some wind retrieval al-

gorithms simultaneously effect advection correction and

wind retrieval, with the advection components deter-

mined as part of the overall analysis procedure (Caillault

and Lemaitre 1999; Caya et al. 2002). Finally, we note

that advection components in convective storms can, in

principle, be obtained from storm-tracking algorithms

(Rosenfeld 1987; Dixon and Wiener 1993; Johnson et al.

1998; Andrejczuk et al. 2003; Lakshmanan et al. 2003;

Yang et al. 2009).

The frozen-turbulence hypothesis as applied to the

reflectivity field R appears as

DR

Dt
5 0, (1.1)

or, equivalently, with the total derivative operator D/Dt

expanded in Eulerian form,

›R

›t
1 U

›R

›x
1 V

›R

›y
5 0. (1.2)

As shown by Gal-Chen (1982, section 2a), the U and V

parameters (constants) that minimize the squared error

in (1.2) satisfy two linear algebraic equations whose co-

efficients are products of the space and time derivatives

of R integrated over a four-dimensional (spatiotemporal)

analysis domain. However, Gal-Chen found that in order

for the solution of those linear algebraic equations to

yield accurate values for U and V, it was necessary to

proceed iteratively, with the coefficients updated with

improved (advection-corrected) estimates of the local

derivative. Since accurate estimation of the local derivative

is required for accurate estimation of U and V (and vice

versa), the coefficients are implicitly functions of U and V,

and thus the ‘‘linear’’ algebraic equations are, in fact,

nonlinear. The potential for nonuniqueness of this method

was noted by Protat and Zawadzki (1999).

When applied to the velocity field u, the frozen-

turbulence hypothesis appears as Du /Dt 5 0, with anal-

ogous expressions for the Cartesian velocity components.

Unfortunately, an analogous expression does not hold

for the radial wind field yr because yr varies with the

sampling angle2 (in addition to the velocity field). How-

ever, as shown by Gal-Chen (1982), if u satisfies the

frozen-turbulence hypothesis, then yr satisfies

D2(ry
r
)

Dt 2
5 0, (1.3)

with the corresponding least squares minimization prob-

lem yielding two nonlinear algebraic equations for U

and V. As in the reflectivity-based approach, accurate

estimation of the local derivatives appearing in the

coefficients in the algebraic equations may require that

one contend with coefficients that depend implicitly on

U and V.

Once U and V have been estimated (e.g., through least

squares error minimization of a frozen-turbulence con-

straint or through a subjective process), radar data can

be advected forward or backward in time along pattern

trajectories to an analysis grid at a common analysis time.

The advection step typically uses a strong-constraint

form of the frozen-turbulence equation: for example, (1.1),

2 Consider a zone of air characterized by uniform westerly winds

(u is constant and positive; y is zero) that advects eastward. When

this zone is probed west of the radar, yr is negative, but when the

same zone is probed when it is east of the radar, yr is positive. Thus,

yr in the zone changes even though the velocity field in the zone

does not change.
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which integrates to R 5 constant following the motion

of the pattern (storm). Alternatively, a linear time inter-

polation formula can be used in conjunction with a

Lagrangian or moving reference frame analysis (e.g.,

Protat and Zawadzki 1999; Liu et al. 2004).

A drawback of treating advection parameters as

constants in an advection-correction procedure is that

analyzed features in regions where the true advection

velocity varies considerably may become distorted or

shifted relative to their correct locations. This problem

may be acute in the analysis of tornados and other small-

scale vortices in high-resolution datasets in which a fea-

ture of interest (e.g., a tornado) can be advected by

a mesocyclone or other nonuniform mesoscale flow.

In this study we introduce an advection-correction

technique for radar reflectivity data in which the advection

components in the frozen-turbulence constraint (1.2) vary

spatially but are independent of time (although an exten-

sion of the procedure to include time dependence in the

advection components is outlined in the appendix). The

procedure can, in principle, be applied to reflectivity data

from Doppler or non-Doppler radars or to microwave or

infrared brightness temperature data from satellites.

The underpinning of the proposed advection-correction

procedure (minimization of a cost function in which a

frozen-turbulence constraint is imposed) is similar to

that of many of the aforementioned single-Doppler ve-

locity retrieval algorithms,3 and especially to that of the

variational echo tracking (VET) procedure (Laroche and

Zawadzki 1995). The main differences are in philoso-

phy, intended application, and some technical details.

In a single-Doppler velocity retrieval, the analyzed field

of interest is the wind field (U, V are interpreted as true

velocity components), and the reflectivity and/or radial

velocity field is treated as a marker for the flow (i.e.,

used as a means to infer the velocity components). For

the purpose of advection correction, however, U and V

are interpreted as pattern-advection components (not

necessarily velocity components of air parcels), and

the focus is on analyzing the reflectivity and/or radial

velocity fields. The distinction between the two inter-

pretations is apparent if we consider, for example, west-

erly flow through a stationary orographic thunderstorm.

Since the storm is stationary, the pattern-advection

U, V components are zero, while air parcels flowing

through the storm have a nonzero westerly velocity

component. We conjecture that in many circumstances,

frozen-turbulence-based single-Doppler velocity retrieval

techniques may actually work better as advection-

correction procedures than as wind retrieval algorithms.

In any case, the computer codes for many single-Doppler

velocity retrievals can, in principle, be adapted to serve as

advection-correction procedures.

A VET formalism was also applied by Germann and

Zawadzki (2002) to the problem of precipitation now-

casting. In that application, as in our study, the U, V

fields are treated as pattern-advection components rather

than velocity components. However, whereas Germann

and Zawadzki (2002) were concerned with the extrapo-

lation of reflectivity observations, which is a forecasting

problem, we are concerned with the use of an inter-

polative procedure to effect the advection correction of

nonsimultaneous data, which is an analysis problem.

The plan of Part I of this study is as follows. In section 2

the analysis is phrased as a variational problem in which

errors in (1.2) are minimized subject to smoothness con-

straints. In sections 3 and 4, a minimization procedure is

proposed to simultaneously determine spatially vari-

able advection fields and analyze the reflectivity field.

The potential solution nonuniqueness for a fairly gen-

eral analysis procedure that includes the Gal-Chen (1982)

reflectivity-based algorithm, the VET procedure, and the

new advection correction method as special cases is dis-

cussed in section 5. Section 5 also serves to verify that the

main numerical modules for the new method are free of

code errors. In Part II of this study (Shapiro et al. 2010,

hereafter Part II), the new method is tested using ana-

lytical data of reflectivity blobs embedded within a solid

body vortex and real Terminal Doppler Weather Radar

(TDWR) and Weather Surveillance Radar-1988 Doppler

(WSR-88D) data of a supercell thunderstorm.

2. Problem statement

Consider an analysis volume comprised of a set of

two-dimensional surfaces, which may be surfaces of con-

stant elevation angle (conical surfaces or sectors of conical

surfaces) or surfaces of constant height. Following the

naming convention for displays of radar data, we will

refer to these surfaces as plan position indicators (PPIs)

and constant altitude plan position indicators (CAPPIs),

respectively. The analysis proceeds on one PPI or CAPPI

surface at a time. A Cartesian (x, y) analysis grid is

embedded on each surface. Reflectivity data are inter-

polated from the observation points on the native spher-

ical grid to the analysis grid. In a PPI analysis, U and V

are quasi-horizontal advection components accounting

for pattern advection on a conical surface, whereas in

a CAPPI analysis U and V are true horizontal advection

components. In the latter case, however, data from two or

more elevation angles are required for the interpolation.

3 Our discussion here refers to single-Doppler velocity retrievals

based on a frozen-turbulence constraint and not on retrievals based

on the full equation set of a numerical weather prediction model.
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Such interpolation invariably carries with it errors due to

nonsimultaneity of the data, but these can be limited if

the number of elevation angles used in the interpolation

to any height surface is small (it may be desirable to re-

strict the analysis to low elevation angles or limit the

lateral extent of an analysis surface so that it is bounded

above and below by the same two scan angles). After the

data are interpolated to an analysis surface, the surface is

given a time stamp indicating the valid time of the data on

that surface.

The advection correction/analysis procedure uses data

from two consecutive volume scans. If T is the time in-

terval between these scans, we can denote the two con-

secutive valid times of the data on the ith analysis surface

as ti and ti 1 T. We refer to these as CAPPI times (or PPI

times). Since it will be necessary to integrate and differ-

entiate certain quantities with respect to time at analysis

points and along trajectories running through analysis

points, we will consider a range of computational times

between the two CAPPI times (Fig. 1). The advection-

corrected/analyzed field will be available at all of the

computational times, so we may refer to them inter-

changeably as analysis times or computational times. In

practice, we may only be interested in the analysis at one

of those times.

Our analysis problem is posed as follows. We seek

U(x, y), V(x, y), and R(x, y, t) fields that minimize a cost

function in which the frozen-turbulence hypothesis (1.2)

and spatial smoothness (penalty) terms are imposed as

weak (least squares error) constraints,

J [

ððð
a

›R

›t
1 U

›R

›x
1 V

›R

›y

� �2

1 b $
h
U

�� ��2 1 b $
h
V

�� ��2" #
dx dy dt, (2.1)

with reflectivity data incorporated at the two CAPPI times

ti and ti 1T. Here $h is the horizontal gradient operator, and

the integration domain extends over the ith analysis surface

and over the time window between the two CAPPI times.

The first-derivative smoothness terms act as low-pass filters

for noise suppression and also provide smooth interpola-

tion of U and V fields across reflectivity data voids (Sasaki

1970, 1971). For our purposes, however, the smoothness

terms are the primary means of obtaining gradually

varying ‘‘large-scale’’ U, V fields suitable for advecting

the smaller-scale features in the data. Such smoothness

terms are not included for the reflectivity field because we

wish to preserve, as much as possible, the small-scale

features and large gradients present in the data (although

a small amount of explicit smoothing designed to remove

grid-scale noise was beneficial in the tests in Part II).

The parameter b in (2.1) is a constant positive weighting

coefficient. The determination of an acceptable value for

b in any given application will likely require some exper-

imentation and the analyst’s intuition concerning what is

desirable or acceptable in the final result. However, if one

reasons that the smoothness terms should be a small fraction

« of the frozen-turbulence term, then scale analysis yields

a crude provisional estimate b ; «Rc
2, where Rc is a re-

flectivity scale. For example, if one takes Rc ; 50 dBZ

(e.g., in a convective storm) and considers the smooth-

ness terms to be ;10% of the magnitude of the frozen-

turbulence term (« ; 0.1), then b is on the order of a

few hundred dBZ2.

The variable a 5 a(x, y, t) in (2.1) is a binary (0, 1)

analysis coverage function (footprint function). Because

of the inhomogeneous distributions and densities of the

scatterers, the footprint of data coverage on an analysis

surface is usually less than the actual area of that surface.

When viewed in PPI/CAPPI imagery, this footprint of-

ten appears as a pattern translating across the screen.

The specification of a will be described in section 3.

3. Minimization of the cost function

To minimize J, we apply basic concepts from the

calculus of variations (e.g., Lanczos 1986; Courant and

Hilbert 1953). Setting the variation of J to zero, we

obtain

FIG. 1. Schematic illustrating the analysis grid at one of the

analysis/computational times with a forward and backward tra-

jectory running through one of the analysis points at that time

(marked with x). Forward and backward trajectories are launched

from every analysis point at every analysis/computational time.

Data from the second CAPPI time are interpolated to forward

trajectories; data from the first CAPPI time are interpolated to

backward trajectories.
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ððð
a

›R

›t
1 U

›R

›x
1 V

›R

›y

� �
›dR

›t
1 U

›dR

›x
1 V

›dR

›y
1 dU

›R

›x
1 dV

›R

›y

�
1 b

›U

›x

›dU

›x
1

›U

›y

›dU

›y

���

1
›V

›x

›dV

›x
1

›V

›y

›dV

›y

��
dx dy dt 5 0. (3.1)

Evaluating (3.1) for the arbitrary and independent var-

iations dU, dV, and dR will lead to a set of differential

equations (Euler–Lagrange equations) for U, V, and R.

Toward that end, we integrate (3.1) by parts so that dU,

dV, and dR appear only in undifferentiated form. We

then obtain

I
tb

1 I
xb

1 I
yb

1 I
dR

1 I
dU

1 I
dV

5 0, (3.2)

where Itb, Ixb, and Iyb are boundary integrals,

I
tb

[

ðð
a

›R

›t
1 U

›R

›x
1 V

›R

›y

� �
dR

� �t
i
1T

t
i

dx dy, (3.3a)

I
xb

[

ðð
aU

›R

›t
1 U

›R

›x
1 V

›R

›y

� �
dR 1 b

›U

›x
dU 1

›V

›x
dV

� �� �x2

x1

dy dt, (3.3b)

I
yb

[

ðð
aV

›R

›t
1 U

›R

›x
1 V

›R

›y

� �
dR 1 b

›U

›y
dU 1

›V

›y
dV

� �� �y2

y1

dx dt, (3.3c)

and IdU, IdV, and IdR are integrals spanning the spatiotemporal analysis domain,

I
dU

[

ððð
a

›R

›x

›R

›t
1 U

›R

›x
1 V

›R

›y

� �
� b

›2U

›x2
1

›2U

›y2

� �� �
dU dx dy dt, (3.4a)

I
dV

[

ððð
a

›R

›y

›R

›t
1 U

›R

›x
1 V

›R

›y

� �
� b

›2V

›x2
1

›2V

›y2

� �� �
dV dx dy dt, (3.4b)

I
dR

[ �
ððð

a
›

›t
1 U

›

›x
1 V

›

›y

� �2

R 1 a
›U

›x
1

›V

›y

� �
›R

›t
1 U

›R

›x
1 V

›R

›y

� ��

1
›a

›t
1 U

›a

›x
1 V

›a

›y

� �
›R

›t
1 U

›R

›x
1 V

›R

›y

� ��
dR dx dy dt. (3.4c)

Since U and V are treated as independent of time, and the time integration extends over an interval T, (3.4a) and

(3.4b) can be rewritten as

I
dU

[

ðð ð
a

›R

›t

›R

›x
dt 1 U

ð
a

›R

›x

� �2

dt 1 V

ð
a

›R

›x

›R

›y
dt � bT

›2U

›x2
1

›2U

›y2

� �" #
dU dx dy, (3.5a)

I
dV

[

ðð ð
a

›R

›t

›R

›y
dt 1 U

ð
a

›R

›x

›R

›y
dt 1 V

ð
a

›R

›y

� �2

dt � bT
›2V

›x2
1

›2V

›y2

� �" #
dV dx dy. (3.5b)

Consider first the vanishing of the boundary integrals.

From (3.3a) we see that Itb vanishes if each analysis point

is subject to one of three conditions (may be applied

independently at each CAPPI time):

(i) a 5 0. No estimate of R is sought (e.g., due to lo-

cally insufficient data coverage).

(ii) a 5 1 and dR 5 0. An estimate of R is sought

and there is sufficient data coverage for that estimate
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(R is known, so no variation of it is considered;

dR 5 0).

(iii) a 5 1 and ›R/›t 1 U›R/›x 1 V›R/›y 5 0 (natural

boundary condition4 for R). An estimate of R is

sought but there is insufficient data coverage for

a direct estimate. The natural boundary condition

permits data to be advected to this location from

the other CAPPI time (if available).

For the boundary integrals in (3.3b) and (3.3c), the

terms multiplying dU, dV, and dR must vanish separately

since these variations are arbitrary and independent of

each other. Since U and V are unknown, dU and dV

should not be set to 0. Instead, we impose the natural

boundary condition that the normal derivatives of U and

V vanish on the boundaries, that is, ›U/›x 5 ›V/›x 5 0

on eastern and western boundaries and ›U/›y 5 ›V/›y 5 0

on northern and southern boundaries. For the terms as-

sociated with dR, we note that since the time integration

extends between the two CAPPI times (an interval over

which data are not sampled), dR should not be set to 0. We

thus subject each location on a lateral boundary to one of

two conditions:

(i) a 5 0. No estimate of R is sought.

(ii) a 5 1 and ›R/›t 1 U›R/›x 1 V›R/›y 5 0. A local

estimate of R is sought via the natural boundary

condition (an advection condition) when a trajec-

tory on which an estimate of R is available at

a CAPPI time leaves the domain at some time be-

tween the two CAPPI times.

Next, consider IdR, IdU, and IdV. Since dU, dV, and dR

are arbitrary and independent of each other, the sum of

terms enclosed by the square brackets in (3.4c), (3.5a),

and (3.5b) should vanish identically. We thus obtain two

coupled linear elliptic partial differential equations for

U and V,

›2U

›x2
1

›2U

›y2
� 1

bT

ð
a

›R

›t

›R

›x
dt 1 U

ð
a

›R

›x

� �2

dt 1 V

ð
a

›R

›x

›R

›y
dt

" #
5 0, (3.6a)

›2V

›x2
1

›2V

›y2
� 1

bT

ð
a

›R

›t

›R

›y
dt 1 U

ð
a

›R

›x

›R

›y
dt 1 V

ð
a

›R

›y

� �2

dt

" #
5 0, (3.6b)

and a parabolic equation for R,

a
›

›t
1 U

›

›x
1 V

›

›y

� �2

R 1 a
›U

›x
1

›V

›y

� �
›R

›t
1 U

›R

›x
1 V

›R

›y

� �
1

›a

›t
1 U

›a

›x
1 V

›a

›y

� �
›R

›t
1 U

›R

›x
1 V

›R

›y

� �
5 0.

(3.6c)

The characteristics of (3.6c) are the curves defined by

the solutions x 5 x(t) and y 5 y(t) of the ordinary dif-

ferential equations Dx/Dt 5 U(x, y) and Dy/Dt 5 V(x, y).

These differential equations resemble traditional trajec-

tory equations for air parcels, but since U and V are the

advection components of a geometrical feature (reflec-

tivity pattern) rather than the velocity components of an

air parcel, the characteristics are not true trajectories. For

the sake of brevity, however, we will refer to the charac-

teristics as trajectories and refer to the motion of elements

of a pattern along the characteristics as motion of parcels.

We constrain the binary (0 or 1) footprint function a

to satisfy the advection equation,

›a

›t
1 U

›a

›x
1 V

›a

›y
5 0, (3.7)

that is, Da/Dt 5 0. Thus, a is 0 or 1 all along a trajectory.

One can consider (at least) two procedures for specify-

ing a. In method 1—the method used in our tests—a is

set to 0 along a trajectory if data are missing on the

trajectory at the first and/or second CAPPI time or if the

trajectory leaves the analysis domain. Only if data are

available on a trajectory at both CAPPI times is a set to

1. In this conservative method, a data void present at the

first or second CAPPI times advects forward or back-

ward in time along trajectories running through it. If

such a trajectory ends in a region of data coverage, then

the good data at that location are orphaned. Thus, not all

available data may be used in the analysis, and the ef-

fective data coverage may be less than the actual data

coverage at either CAPPI time. In method 2, a is only

set to 0 along a trajectory if data are missing on the

4 A natural boundary condition is a boundary condition that arises

‘‘naturally’’ (i.e., can be deduced) as a property of the minimization

problem. For our problem, the natural boundary conditions turn

out to be Neumann conditions on U and V and an advection con-

dition on R.
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trajectory at both CAPPI times. If data are available at

either CAPPI time (or both), then a is set to 1. No data

are orphaned in this less conservative approach. If data

are missing on the trajectory at one CAPPI time, the

data void is subject to the natural boundary condition

›R/›t 1 U›R/›x 1 V›R/›y 5 0, as in the evaluation of Itb.

Applying (3.7) in (3.6c) and expressing the result in

characteristic (trajectory) coordinates, we obtain

a
D2R

Dt2
1 a

›U

›x
1

›V

›y

� �
DR

Dt
5 0. (3.8)

For trajectories along which a 5 0, (3.8) is identically

satisfied (0 5 0), and no information about R is re-

covered; that is, R is not analyzed. For trajectories along

which a 5 1, (3.8) can be solved for DR/Dt as

DR

Dt
5 A exp �

ðt

ti

›U

›x
1

›V

›y

� �
dt9

" #
, (3.9)

where A is a constant of integration. Integration of (3.9)

with respect to time along a trajectory then yields a for-

mula for R involving two constants of integration. Using

the data at the two CAPPI times to evaluate the con-

stants of integration, we obtain an analysis formula for

R as

R(t) 5 R(t
i
) 1 [R(t

i
1T)� R(t

i
)]

I(t)

I(t
i
1 T)

, (3.10)

where

I(t) [

ðt

t
i

exp �
ðt9

t
i

div(t0) dt0

" #
dt9, div [

›U

›x
1

›V

›y
.

(3.11)

Had we used method 2 for the evaluation of a, then in

cases where data were available on a trajectory at both

CAPPI times we would recover (3.10) and (3.11), but if

data were missing at one of the CAPPI times then ap-

plication of the natural boundary condition (DR/Dt 5 0)

in (3.9) would yield A 5 0, and thus R(t) 5 constant

along that trajectory.

We draw attention to several aspects of the procedure:

(i) The integrals in (3.6a) and (3.6b) are evaluated at

fixed locations (Eulerian sense) whereas those in

(3.11) are evaluated along trajectories (Lagrangian

sense). Although U and V (and hence div) are

considered to be in a steady state, they may well

vary with time in a Lagrangian sense since they

vary spatially and so are not constant in the in-

tegrals in (3.11).

(ii) If the horizontal divergence div vanishes all along

a trajectory, (3.10) reduces to a standard linear

interpolation formula, R(t) 5 R(ti) 1 [R(ti 1 T) 2

R(ti)](t 2 ti)/T.

(iii) The U and V fields are obtained throughout the

analysis domain, even in regions where R is not

analyzed (data voids). In regions where a 5 0,

(3.6a) and (3.6b) reduce to Laplace’s equations

for U and V. According to the maximum principle

for Laplace’s equation, U and V have the desir-

able property that within these voids they are

smooth functions without local extrema (Flanigan

1983).

(iv) Although this procedure was described in contin-

uous form, in real applications it must be imple-

mented in discretized form. The discretization and

other computational details are discussed next.

4. Computational considerations

Equations (3.6a), (3.6b), (3.7), (3.10), and (3.11) are

solved by iterating between updates of R and updates of

U and V. The (n 1 1)th pass through the overall pro-

cedure begins with the nth estimates available for U, V,

and R on the analysis grid. Equations (3.6a) and (3.6b)

subject to zero-normal-gradient boundary conditions

are then solved for the updated [(n 1 1)th] U, V fields

using successive relaxation. It can be shown that the

solution of (3.6a) and (3.6b) subject to zero-normal-

gradient boundary conditions is unique during any sin-

gle pass through the procedure, that is, with the R field

held fixed (although as discussed in section 5, unique-

ness of the overall procedure—that is, with the R field

continually updating—cannot be guaranteed). The up-

dated U, V, and div fields are then used in the trajectory

analysis. At each computational time and at each anal-

ysis point, trajectories are launched forward and back-

ward in time. The trajectories are calculated using a

fourth-order Runge–Kutta technique (Press et al. 1992),

with the (n 1 1)th U, V, and div fields bilinearly inter-

polated from analysis grid points to points along the

trajectories. Each forward trajectory is tracked until

the second CAPPI time or until the trajectory leaves the

analysis domain, and each backward trajectory is

tracked until the first CAPPI time or until it leaves the

analysis domain. If an analysis surface has N grid points

and there are M computational times between the two

CAPPI times, then NM forward trajectories and NM

backward trajectories are calculated over the course of

an analysis time window. For each analysis point and
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computational time, the corresponding parcel locations

x(t), y(t) along the full trajectory (combined forward and

backward) are noted and stored. Reflectivity data are

bilinearly interpolated to the end points of the trajec-

tory (i.e., at the two CAPPI times), if available. If ra-

dial velocity data are to be analyzed, these data are

also interpolated to the end points of the trajectory.

The footprint function a is then evaluated on the tra-

jectory as a 5 0 or 1, following method 1. The solution

for the updated [(n 1 1)th] R field along a trajectory

then follows from (3.10) and (3.11). The iterations

continue until differences between successive esti-

mates of the U, V and R fields are less than specified

thresholds. Since the successive relaxation module is

itself an iterative algorithm, the overall analysis pro-

cedure is ‘‘doubly iterative.’’ When discussing conver-

gence thresholds we will make a distinction between

the convergence threshold for the successive relaxa-

tion module and the convergence threshold for the

overall procedure.

5. Solution nonuniqueness

As discussed in section 1, Gal-Chen’s (1982) reflectivity-

based advection-correction procedure leads to two linear

algebraic equations for U and V whose coefficients are

integrals of products of the spatial and local derivatives

of R. However, since the estimates of the spatial and local

derivatives themselves may be sensitive to the advection

correction, the coefficients are implicitly functions of

U and V. Gal-Chen proposed an iterative procedure in

which U and V are continually reevaluated based on an

advection-corrected reflectivity field, which itself is

continually recalculated using updated U and V esti-

mates. The problem is nonlinear, and the solution of

the linear algebraic equations is merely formal. In this

section we show that the reflectivity-based analysis prob-

lem considered by Gal-Chen, the VET problems consid-

ered by Laroche and Zawadzki (1995) and Germann and

Zawadzki (2002), and the spatially variable advection

correction problem now under consideration may have

multiple solutions, even in the most optimistic scenario

of data quality and spatial coverage. Local minima in

the analysis cost functions were noted in the real-data

experiments of Laroche and Zawadzki (1995) and

Germann and Zawadzki (2002). Here we find that a

fairly general class of advection-correction/analysis pro-

cedures may be subject to nonuniqueness. The proof

identifies an idealized flow for which there are an infinite

number of solutions satisfying all of the analysis con-

straints.

Consider a class of advection-correction/analysis pro-

cedures based on minimization of the cost function

M [

ð
a

›R

›t
1 U

›R

›x
1 V

›R

›y

� �2

1 �
P

j51
b

j
jL

j
(U)j2

2
4

1 �
P

j51
b

j
jL

j
(V)j2

3
5dV, (5.1)

with reflectivity data incorporated from two successive

volume scans. Here P is the number of smoothness

constraints, bj is the weighting coefficient for the jth

smoothness constraint, and Lj is any linear constant-

coefficient differential operator (in space and/or time)

of any order. The Gal-Chen algorithm corresponds to

the case in which no smoothness constraints are imposed

(all bj are zero) and V is a four-dimensional analysis

domain (volume and time). Our spatially variable ad-

vection correction algorithm corresponds to the case

where b1 5 b2 6¼ 0 with all other bj being zero, L1 5 ›/›x,

L2 5 ›/›y, and V is a three-dimensional analysis domain

(area and time). The cost functions underlying the VET

methods of single-Doppler velocity retrieval (Laroche

and Zawadzki 1995) and precipitation echo motion

analysis (Germann and Zawadzki 2002) are also par-

ticular cases of (5.1).

Consider a true reflectivity field in the form of a

wave propagating in the x direction, R(x, y, t) 5

A exp [2(ky)2] cos[k(x 2 Utruet)], where the amplitude

A, wavenumber k, and advection speed Utrue are con-

stant. With this reflectivity field sampled at two CAPPI

times, t 5 0 and t 5 T, the input data become

R
0

5 A exp[�(ky)2] cos(kx) and

R
T

5 A exp[�(ky)2] cos[k(x�U
true

T)]. (5.2)

These data are considered in their exact form (5.2)

without sampling or interpolation errors so as to (i) most

simply illustrate the nonuniqueness problem, (ii) show

that the problem of nonuniqueness could potentially

occur even with the most optimistic data quality and

spatial coverage scenarios, and (iii) verify that the main

components of our numerical codes for the iterative Gal-

Chen procedure and our proposed technique are free of

errors. Now consider an analyzed reflectivity field valid at

any time t between the two CAPPI times of the form

R 5 A exp[�(ky)2] cos[k(x�Ut)], (5.3)

with the pattern advection components analyzed as the

constant values

U 5 U
true

1
2pm

kT
, V 5 0, (5.4)
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where m is any integer. It is easy to show that (5.3)

satisfies the two data constraints [(5.2)]. Moreover, since

(5.3) exactly satisfies the advection Eq. (1.2), while all

orders of the spatial and temporal derivatives of the

analyzed advection fields (5.4) vanish throughout the

analysis domain, the cost function defined in (5.1) is

zero, which is a minimum value. However, since there is

no restriction on m other than it being an integer, there

are, in principle, an infinite number of U and corre-

sponding analyzed reflectivity fields that exactly satisfy

all conditions of the analysis problem. This example il-

lustrates that the class of advection-correction/analysis

procedures governed by (5.1) with data incorporated at

two CAPPI times is potentially subject to stroboscopic

effects arising from temporal aliasing.

As an illustrative example, we tested an iterative Gal-

Chen-like analysis procedure using (5.2) with A 5 10 dBZ,

wavelength l 5 6 km (k 5 2p/l), T 5 300 s, and Utrue 5

215 m s21. The analysis domain was a 50 km 3 50 km

square with a gridpoint spacing of Dx 5 Dy 5 200 m. The

computational time step was Dt 5 10 s. The procedure

was deemed to have converged when the U and V fields

on all grid points changed by less than 1023 m s21 from

their values in the previous iteration. The reflectivity

was analyzed along trajectories using (3.10) and (3.11),

which, as already noted, provide linear interpolation in

the case where U and V are constant. A ‘‘correct’’

analysis should yield values of U and V close to those

from (5.4) with m 5 0, that is 215 and 0 m s21, re-

spectively. Since the y dependence of the reflectivity

field is Gaussian rather than wavy, we anticipate that

‘‘incorrect’’ analyses would still yield V close to 0 m s21,

but that values of U would be close to those obtained

from (5.4) with nonzero values of m. In test 1, the first

guesses for U and V were obtained from Gal-Chen’s

linear algebraic equations with coefficients estimated

from reflectivity data that had not been advection cor-

rected (i.e., from a single-pass of the Gal-Chen pro-

cedure in which the local derivative was discretized

across the scan interval T, and spatial derivatives were

discretized as centered spatial differences averaged

between times t 5 0 and t 5 T). The computed first

guesses—U ’ 6.412 m s21, V ’ 0.000 m s21—were

close to the values associated with a wrong (m 5 1)

solution. Not surprisingly, the procedure converged rap-

idly (three iterations) and with good precision to this

wrong solution (Table 1). In test 2, the first guesses for

U and V were set to zero. The procedure again con-

verged rapidly (four iterations) to the same wrong so-

lution. In test 3, the first guesses for U and V were set

to 210 m s21. In this case, the procedure converged in

six iterations to the correct solution.

Next, we tested the new spatially variable procedure

with the same input data, analysis parameters, and first-

guess values as described above. During each iteration

of the overall procedure, the successive relaxation al-

gorithm ran until changes in the wind components at all

grid points were less than 1026 m s21, or until 40 000

iterations had been completed. The high spatial and

temporal resolution of the analysis and the extremely

small convergence thresholds for the relaxation algorithm

(1026 m s21) and the overall procedure (1023 m s21) are

probably unnecessarily stringent for most applications,

but they were useful here to establish that the main

components of the numerical codes were free of errors.

For the present case in which the actual advection

components are constant and the input data are free of

error, one would expect an error-free spatially variable

analysis code to yield analyzed winds that are nearly

constant on the analysis grid, nearly independent of the

value of the smoothness weight b, and very close to one

of the solutions given by (5.4). Indeed, tests using the

same three sets of first guesses described above yielded

U, V fields that were nearly constant (Table 1), with

values obtained with b 5 10 dBZ2 very similar to those

obtained with b 5 100 dBZ2 (not shown) and to those

obtained in the tests of the Gal-Chen procedure.

6. Summary and future work

In this study we considered an advection-correction/

analysis procedure for radar reflectivity in which the

pattern-advection components vary spatially. The pro-

cedure was motivated by the common scenario in

which reflectivity features in different parts of a con-

vective storm advect at different speeds. The analysis

was phrased as a variational problem in which errors

in the frozen-turbulence constraint were minimized

TABLE 1. Pattern-translation components U and V from a Gal-Chen-like retrieval and from the spatially variable procedure with b 5

10 dBZ2. The input reflectivity data satisfy (5.2) with parameter values given in the text. Tests were conducted using three sets of first

guesses for U and V. The true values of U and V are 215 and 0 m s21, respectively. All values are in meters per second.

First guesses Gal-Chen retrieval Spatially variable retrieval

Test 1: U ’ 6.412, V ’ 0.000 U ’ 5.035, V ’ 0.000 5.038 , U , 5.062, 20.004 , V , 0.004

Test 2: U 5 0, V 5 0 U ’ 5.035, V ’ 0.000 5.004 , U , 5.037, 20.004 , V , 0.004

Test 3: U 5 210, V 5 210 U ’ 215.049, V ’ 0.000 215.052 , U , 214.981, 20.020 , V , 0.027
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subject to smoothness constraints. The Euler–Lagrange

equations for this problem simplified in characteristic

coordinates (trajectories), and their solution was pro-

posed through a combined analytical and numerical

procedure.

A theoretical analysis of a fairly general class of

advection-correction/analysis procedures indicated that

the new spatially variable method as well as the Gal-

Chen reflectivity-based pattern-advection procedure

and some single-Doppler velocity retrievals (e.g., VET)

might be susceptible to solution nonuniqueness associ-

ated with temporal aliasing. This implies that in real

applications the solutions obtained by these methods

may sometimes depend on the first guesses for U and V.

However, Germann and Zawadzki (2002) suggest that,

in practice, an accurate analysis can be obtained if one

uses a reasonably accurate first guess. Assuming this is

the case, it may be desirable to simply base the first guess

on a subjective (visual) estimation of the motion of key

features of interest (Heymsfield 1978; Carbone 1982;

Austin 1987; Dowell and Bluestein 1997). Confidence in

the final results could then be bolstered if the analyses

were found to be relatively insensitive to perturbations

of the first guess about the visual estimate.

In the future, we would like to extend the present

methodology to include time dependence in the pattern-

advection components. One possible extension in that

direction is outlined in the appendix. It may also be

desirable to extend the current methodology to three

dimensions by including a vertical advection term in

the frozen-turbulence constraint and vertical derivative

terms in the smoothness constraint; however, such an

extension would require grappling with the problem of

interpolating nonsimultaneous data from multiple ele-

vation angles (an issue discussed at the beginning of

section 2).

The current version of the spatially variable advection

correction procedure was tested using analytical reflec-

tivity blobs embedded in a solid-body vortex and real

TDWR and WSR-88D data of a tornadic supercell

thunderstorm that passed over central Oklahoma on

8 May 2003. Results from these tests will be reported on

in Part II of this study.

Acknowledgments. The authors thank the anonymous

reviewers for their helpful comments. This research

was supported by the National Science Foundation

(NSF) under Grant ATM-0532107, by the Engineer-

ing Research Centers Program of the NSF under

Cooperative Agreement EEC-0313747, and by the

NOAA/NWS Collaborative Science, Technology, and

Applied Research (CSTAR) Program through Grant

NA17RJ1227.

APPENDIX

Advection Correction of Reflectivity Data with
Unsteady Pattern-Advection Fields

The analysis procedure described in this paper applies

to U, V advection fields that vary spatially (gradually)

but are in a steady state. We now show how the analysis

procedure can be extended to include U, V fields that

also vary slowly in time (in an Eulerian sense). Consider

a new cost function K defined on the analysis surface by

K [ J 1

ððð
g

›U

›t

� �2

1 g
›V

›t

� �2
" #

dx dy dt, (A.1)

where J is defined in (2.1) and g is a constant positive

temporal weighting coefficient. The new cost function

differs from the original by inclusion of weak-constraint

terms penalizing large temporal derivatives of U, V.

When K is minimized, these new terms will provide

‘‘smoothness in time’’ for the U, V fields. We view the

temporal weight g as a tunable parameter, as in our

treatment of the spatial smoothness weight b.

It can readily be shown that two of the Euler–Lagrange

equations corresponding to the minimization of (A.1)

are

g

b

›2U

›t2
1

›2U

›x2
1

›2U

›y2

� a

b

›R

›t

›R

›x
1 U

›R

›x

� �2

1 V
›R

›x

›R

›y

" #
5 0 and

(A.2a)

g

b

›2V

›t2
1

›2V

›x2
1

›2V

›y2

� a

b

›R

›t

›R

›y
1 U

›R

›x

›R

›y
1 V

›R

›y

� �2
" #

5 0. (A.2b)

Equations (A.2a) and (A.2b) are similar to (3.6a) and

(3.6b) in that they are elliptic (now in x, y, and t vari-

ables), but unlike (3.6a) and (3.6b), the terms involving

reflectivity are instantaneous values (i.e., not time in-

tegrals), and time derivatives of U, V now appear. The

third Euler–Lagrange equation is found to be identical

to (3.6c). In the course of deriving these three Euler–

Lagrange equations, the same boundary conditions ob-

tained in section 3 are found to apply in this extended

case, but we must also impose the temporal conditions

›U/›t 5 0 and ›V/›t 5 0 at the two CAPPI times.

Since (3.6c) applies, and we also impose (3.7) on a, all

the subsequent analysis formulas in section 3 apply in
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the present case as well. The extended procedure differs

from that in section 3 in the determination of a time

dependence in U, V through the relaxation solution

of (A.2a) and (A.2b). The Runge–Kutta formulas used

in the trajectory calculations (section 4) should also

be adjusted to accommodate the explicit Eulerian un-

steadiness in the U, V fields.
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