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ABSTRACT

A theoretical model for unsteady drag-induced transfer of horizontal momentum between air and rain-
drops in moderate to heavy rainfall is presented. The model accounts for a two-way coupling in which the
relative horizontal motion between air and raindrops appears as a drag forcing in both the air and raindrop
equations of motion. Analytical solutions of these coupled equations are obtained for the case of rain falling
through (i) an initial step change in environmental wind, (ii) a uniform shear profile, and (iii) periodically
varying vertical shears of various wavenumbers (a crude proxy for turbulent eddies). Formulas for the
propagation (descent) speeds of the shear zones are obtained for (ii), (iii), and for the later stage of (i).
However, these speeds are generally quite small—on the order of a few centimeters per second even for
heavy rainfall. More importantly, the solutions of (i) and (iii) indicate that the drag interaction leads to a
decay of the velocity gradients. A formula for the e-folding decay time of the periodically varying shear
profiles indicates that at small wavelengths, the smallest decay times are found for the smaller drops, but at
large wavelengths, the smallest decay times are found for the larger drops. The decay times decrease with
decreasing wavelength, and approach a value equal to the reciprocal of the product of the rainwater mixing
ratio and a drag parameter in the limit of vanishing wavelength. For parameters typical of moderate to
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heavy rainfall, the small-scale decay times are on the order of a few minutes.

1. Introduction

By virtue of their inertia, hydrometeors falling in a
turbulent or sheared environment can have substantial
horizontal as well as vertical motion relative to the air.
The present study is concerned with two-way drag cou-
pling (feedback) associated with this differential mo-
tion, a subject that has received scant attention in the
literature. The focus is on understanding and quantify-
ing the role of two-way drag coupling in modifying the
structure of idealized but meteorologically interesting
environmental shear profiles. While the effect is found
to be rather subtle, the results suggest there may be
significant modification of the finescale structures
(scales less than ~50 m) in moderate to heavy rainfall,
or in cases of persistent rainfall.

The differential motion between hydrometeors and
air (imperfect particle response) has implications for
radar and aviation meteorology, where Doppler spec-
trum width measurements can potentially be used to
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detect and quantify turbulence levels (Brewster and Zr-
nic 1986; Meischner et al. 2001, and references therein).
One of the results of the present investigation is a for-
mula for the ratio of the amplitudes of the horizontal
components of the rain and air velocities in distur-
bances varying periodically in the vertical (which can be
thought of as periodic shear layers or as crude proxies
for turbulent eddies). The formula is nearly identical to
that obtained by Stackpole (1961) and Bohne (1982),
even though it was derived from different physical as-
sumptions (two-way drag coupling instead of one-way
drag coupling). Thus, conclusions reached in those two
previous studies concerning the interpretation of Dopp-
ler spectrum width and eddy dissipation rates in pre-
cipitation environments should also apply in the case
where two-way coupling is accounted for. In particular,
Bohne (1982) concluded that for radars with a 1° half-
power beamwidth and 200-m pulse volume depth, fail-
ure to account for imperfect tracer response in heavy
rainfall may lead to significant underestimation of tur-
bulent intensity at short ranges (<20 km) or in regions
where the outer scale of turbulence is less than 500 m.
Such a scenario may well be encountered in field de-
ployments of ground-based or airborne Doppler radars
in studies of breaking Kelvin—-Helmholtz waves, thun-
derstorm outflows, finescale structures of frontal zones,
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cumulus convection, and other small-scale convective
phenomena.

The dynamical interactions associated with differen-
tial motion between air and hydrometeors are also be-
coming increasingly important in cloud physics studies
(see review articles of Pinsky and Khain 1997; Vaillan-
court and Yau 2000; Shaw 2003). For example, these
interactions can lead to the preferential concentration
or dispersal of particles within specific regions of the
flows (e.g., through centrifuging of particles in eddies),
can affect hydrometeor collection efficiencies, and may
lead to rapid broadening of drop size distributions.
Two-way drag coupling associated with differential par-
ticle motion may impact these processes indirectly, by
reducing the amount of energy in the (small) scales
affecting these processes.

Because of the complexity of the problem, most of
the work on air/hydrometeor interactions has focused
on one-way coupling, that is, interactions that affect the
hydrometeor velocity but not the wind field. In one of
the few investigations concerned with two-way cou-
pling, Caldwell and Elliott (1972) considered the struc-
ture of the wind in a rainy surface layer. In that study,
the coupled equations of motion for the air and rain-
drops together with a mixing length representation for
the turbulent stress were solved iteratively. The result-
ing wind profile was found to deviate only slightly from
the logarithmic wind profile, even for heavy rainfall.
However, that analysis was limited to an equilibrium
(steady state) flow in a shallow domain dominated by
surface effects.

The present investigation is concerned with transient
two-way drag coupling between air and raindrops in
moderate to heavy rainfall at levels of the atmosphere
high enough that surface effects can be neglected. To
facilitate an understanding of this interaction and its
effect on winds in the free atmosphere, a number of
secondary factors are excluded from consideration. Mi-
crophysical processes such as phase changes, drop col-
lisions, coalescence, and breakup are neglected. It is
assumed that the drops are spherical, and a monodis-
perse drop population (equal-sized drops) is consid-
ered. The simplest possible framework is examined
here, where the horizontal velocities of the air and rain-
drops are horizontally uniform, but are allowed to vary
in the vertical and evolve in time in accord with the
drag interaction. Three types of unidirectional shear
structures will be analyzed: (i) initial step change in
velocity profile, (ii) uniform vertical shear, and (iii) pe-
riodically varying vertical shears of various wavenum-
bers. Analysis of this latter flow is a preliminary step
toward understanding the drag coupling in more real-
istic turbulent flows.

To fix the main ideas of this article, consider an en-
vironment with a step change in wind profile at some
midtropospheric level z = h. Above this level, the wind
is unidirectional with speed V, whereas beneath this
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level the speed is zero. At ¢t = 0, rain begins to fall
through the shear zone. Since the rain originates in the
level above the shear zone, it initially has the same
horizontal velocity component V as the air above that
level. For t > 0, rain just falling through the shear layer
exerts a lateral drag force on the initially quiescent air,
inducing a lateral motion in the air. It is expected that
the first raindrops to fall through the shear zone will
quickly impart their lateral momentum to the air be-
neath the shear zone, depleting their own lateral mo-
mentum in the process, and thereafter falling through
the air with negligible lateral momentum. The actual
depth over which this occurs is an important parameter
of the study. The drops immediately above these first
drops should also impart their momentum to the air but
should be able to carry their momentum downward a
little further than their predecessors since the air be-
neath the shear zone now has nonzero horizontal mo-
mentum. In other words, the first raindrops condition
the air so that the next raindrops can fall further before
transferring their horizontal momentum to the air. If
the rainfall is prolonged then a process where momen-
tum is deposited at progressively lower levels is likely,
resulting in a slow descent and smoothing of the shear
zone.

The plan of this paper is as follows. Section 2 intro-
duces a simple dynamical model for the two-way drag
coupling between the air and raindrops and show that,
for the case of unidirectional shear flow, the horizontal
components of the equations of motion for the air and
raindrops reduce to a single second-order linear partial
differential equation. Section 3 investigates the initial
value problem described above, that is, the evolution of
an environment with an initial step change in wind
speed. Section 4 considers the evolution of a uniform
shear profile, and section 5 considers the evolution of
periodically varying wind shear profiles. Section 5 also
contains a simple qualitative analysis of the impact of
parameterized drag on spectral energy transfer rates in
a stationary energy cascade. A summary is presented in
section 6.

2. Governing equations for two-way drag
interaction between air and raindrops

The forces, equation of motion, and key results for a
single heavy spherical particle falling through the atmo-
sphere are described elsewhere (e.g., Stackpole 1961;
Bohne 1982; Stout et al. 1993, 1995; Khain and Pinsky
1995; Pinsky and Khain 1997), and will only be briefly
summarized herein. The primary forces acting on a
single particle are the gravity force (corrected for buoy-
ancy of the surrounding air) and the drag force F asso-
ciated with relative motion between the particle and the
air. Whereas the gravity force acts in the vertical, the
drag force acts in the direction of the relative velocity
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vector (velocity seen by an observer fixed with respect
to the falling particle), and generally has three compo-
nents. The drag force vector can be written as

o
F = CD § szaVrclVreh (1)

where Cp, is the dimensionless drag coefficient, D is
the particle diameter, p, is the air density, V =
V,— V, is the relative velocity vector (difference be-
tween air velocity V, and particle velocity V,), and V,,
= |V, | is the relative particle speed. Experiments with
spherical particles have shown that Cp, is a function of
the Reynolds number, Re = p V., D/u, where p is the
dynamic viscosity of air. The functional relation Cj, =
f(Re) has been determined experimentally for a large
range of Re, and is well approximated by empirical
formulas.

A particle falling through still air accelerates until the
magnitude of the drag force (1) is large enough to bal-
ance the gravity force. The vertical velocity in this
steady state is known as the terminal velocity. The be-
havior of a particle falling through a turbulent environ-
ment is more complex. At small values of Re (Stokes
regime), Cj, varies inversely with Re, so an increase in
V.1 associated with a wind gust is countered by a de-
crease in Cp,. However, at large values of Re (10° < Re
< 10%), C,, is relatively insensitive to Re, and increases
in V.., are more effective at increasing the drag force.
Thus, the settling velocity of a heavy particle encoun-
tering wind gusts is reduced from what it would be in a
still fluid. However, as shown in Fig. 13 of Stout et al.
(1995), the magnitude of this effect is small for low to
moderate turbulence levels. In this study we suppose
this effect is of secondary importance, and consider the
vertical velocity of the drop to be little changed from its
terminal velocity value in still air, a restriction also
adopted by Stackpole (1961), Bohne (1982), and Khain
and Pinsky (1995).

Now consider a tiny volume of air containing, at
some instant of time, a mixture of dry air of mass M,
and a monodisperse population of N raindrops of di-
ameter D, density p, and velocity V,. The total mass of
the drops in this volume is M, = Nm,, where m, =
p,(4/3)m(D/2)? is the mass of an individual drop. The
net drag of the dry air on the drops within the volume
is NF where F is given by (1). By Newton’s principle of
action and reaction, the drops exert an equal and op-
posite force —NF on the dry air. Accordingly, the equa-
tion of motion for the drops can be written as

r

"odt

M =NF+B, )

where B, is the (buoyancy corrected) gravity force on
the drops, and d/dt is the total derivative following the
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motion of the drops, while the equation of motion for
the dry air can be written as

MDV“ NF + B 3
aDl_ a> ()

where B, is the sum of the (vertical) pressure gradient
force and the gravity force, and D/Dt is the total de-
rivative following the motion of the air. Dividing (2)
and (3) by M, and M, respectively, and using (1) for F,
we obtain

dVr _ 3 Pa CD 174 v + Br 4
dt - 4 o, D rel rel Mr, ( )
DV, 3p,Cp B,
Dt - _qr<zp_ D Vrcl>Vrcl + Ma > (5)
where
q,=M,/M, (6)

is the rainwater mixing ratio.

In this study the horizontal velocity components of
the air and raindrops are treated as horizontally homo-
geneous and unidirectional, though with magnitudes
that vary in the vertical. It is also supposed that the air
and raindrop vertical velocities can be approximated as
constants, at least over the largest vertical dimensions
considered in this study, which is on the order of 10> m.
The type of vertical air motion envisioned (if any) is of
a slow mesoscale ascent or descent at midlevels of the
atmosphere, however this motion is not an important
feature of the study. A Cartesian coordinate system is
introduced in which one axis (say, y axis) is oriented in
the direction of the wind, while the z axis points up-
ward. The air, rain, and relative velocity vectors can
then be writtenas V, = v,j + w k, V, = vj + w,k, and
V. = (v, —v)j + (w, — w,)k, where j and k are unit
vectors pointing along the positive y and z axes, respec-
tively, v, = v,(z, ) and v, = v,(z, t) are the horizontal
components of the air and rain velocity, and w, and w,
are the (constant) air and rain vertical velocity compo-
nents. Taking the dot product of (4) and (5) with j
(noting that B, and B, only project in the k direction),
and expanding the total derivatives as d/dt = d/ot +
w,dldz and D/Dt = d/ot + w,d/0z, we obtain

3v,+ g, 3paCDv ;
ot w, 9z - 4 o, D rel (Ua Ur)v ( )

v, v, 3p,.Cp

E W, 9z _qr<4 o, D Vrel)(va - Ur)' (8)
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TABLE 1. Examples of raindrop parameters and eddy decay times (small-wavelength limit) at 700 mb.
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Eddy decay times 7, (s) for small wavelengths

D (mm) w, (ms™ 1) Re Cp ) q, = 0.001 q, = 0.002 q, = 0.003 q, = 0.004 q, = 0.005
1.0 —45 240 0.71 2.18 459 229 153 115 92
1.5 -6.3 510 0.55 1.58 633 316 211 158 127
2.0 =77 820 0.48 1.26 794 397 265 198 159
2.5 =87 1160 0.44 1.05 952 476 317 238 190
3.0 -93 1490 0.42 0.89 1124 562 375 281 225

Attention is restricted to terminal velocities w, = v,

w, — w, so much larger than v, — v, that V, = oT —q,AM v, — v). (12)

[(v, = v,)* + w?]"" can be safely approximated as V. ~
|w,| (if v, — v, was as large as 10% of w,, the relative
error in V 4 would be only ~0.5%, while if v, — v, was
as large as 30% of w,, the relative error in V. would
rise to only ~4.5%). Since w, and w, are treated as
constant, w, is also constant. The constancy of these
variables is consistent with the restriction that v, — v,
contributes negligibly to V. If v, — v, did become
large, the drag term in the vertical component of (4)
would affect the vertical velocity in the manner de-
scribed above.

Since the air velocity field is horizontally homoge-
neous with constant vertical component, the Bous-
sinesq form of mass conservation (incompressibility
condition) is satisfied identically. These same restric-
tions on the raindrop velocity field and the assumed
monodisperse drop size distribution ensure that the
conservation law for drop concentration is also satisfied
[Eq. (17) of Shaw (2003)].

In view of the constancy of w, (and D), the Reynolds
number and drag coefficient Cj, are also constant, and
it is convenient to introduce the (constant) drag param-
eter

)\E———|Wt|. (9)

Later, when the two-way coupling results are compared
with results from previous one-way coupling studies, we
will use the relation A = —g(1 — p,/p,)/w,, which follows
from the vertical component of (4).

It is also convenient to work in a frame of reference
moving vertically with the air. The space and time vari-
ables in the moving frame are

Z=z—wgit—h, T=t, (10)
where A is a reference altitude which will be identified

as the initial height of a shear zone. In the moving
frame, the equations of motion (7) and (8) become

v, N v, N
W, FVA - (Ua Ur)?

o7 (11)

Using (12) to eliminate v, in favor of v, in (11) results in
a second-order linear hyperbolic partial differential
equation,

v, + v, + Mg, +1 Na A e _ 0
o2 T Weazar T MG T Dot Agw 5 =0.
(13)

3. Initial value problem: Step change in wind
profile

In this section we will look at the evolution of an
initial velocity discontinuity after the onset of rainfall.
Suppose the initial horizontal velocity components of
the rain and air jump by a factor of V at z = A (i.e.,
Z =0)

v(Z,0) = v,(Z) = VH(Z), (14)

where H(Z) is the Heaviside unit step function (=0 for
Z <0, =1 for Z > 0).

Since the first drops to pass through the shear zone
are exposed to undisturbed air (v, = 0) throughout
their descent, the equation of motion (11) for these
leading edge drops can be written as dv,/dT = —A\v,
which has the solution v, = V exp(—AT). Thus, 1/\ is
the horizontal relaxation (e-folding) time scale, the
time over which drops falling through an undisturbed
environment reduce their horizontal momentum to 1/e
of their initial value. For the moderate to heavy rain
parameters considered in Table 1, the relaxation times
are on the order of 1 s.

Integrating (11) and (12) across the lengthening col-
umn bounded on the bottom by the leading edge drops
[Z,(T) = w,T] and at top by the initial height of the
shear zone (Z = 0) [using Leibnitz rule, dZ,/dT = w,
and v,(Z,) = 0], we obtain the coupled linear ordinary
differential equations,
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d (° 0 0
d_TJ v,dZ—i—w,V:)\[f v,dZ — f v,dZ],
Zp(T) Zp(T) Zp(T)

(15)
d (o 0
— v.dZ = —qg,\ v, dZ
ar J’Zb(T) ¢ 1 [fzh(ﬂ ¢ ¢
0
- f v, dZ]. (16)
Zp(T)

The solution of (15) and (16) subject to Z,(0) = 0 is
obtained as

0 w,Vq, w,V
v.dZ=— T— >
Zu(1) I+q, (1+gq)rA

[1 _ 67(1 +q,))\T]’

(17a)
w/Vq,
1+ q,)°A

0
f wdz=— 2V [1— e (HarT],
Zp(T)

(17b)

Subtracting (17b) from (17a), we obtain the integrated
velocity defect as

0
w,V _ -
v—v)dZ=——"—""[1l—-¢ A+anrT),
fzb(n ( a) 1+ qr))\[ ]

(18)

V,

AGAT—Z/wy)
v, = 4 Ve MM J’ e "I,2\/\Zww,) du,

0

0’

where [, is the modified Bessel function of the first kind
of order zero [properties of modified Bessel functions
are described in Abramowitz and Stegun (1964) and
other standard references].

0
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e f e “I,2\/—Z*u) du, —T*<Z*<0,
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For the usual meteorological case where g, <1, and for
times greater than a few horizontal relaxation time
scales (at most a few seconds), (17a), (17b), and (18) are
well approximated by

0 w,V
v, dZ ~ — ——(\q,T + 1), (19a)
Zp(T) A
0 w,Vq,
v, dZ ~ — AT —1),  (19b)
Zp(T) A
0 w,V
(v, —v)dZ ~ — . (20)
Zp(T) A

Thus, the column length and column-integrated veloc-
ity profiles increase linearly with time, but the column-
integrated velocity defect is constant. Since —w,/A is the
distance a drop falls in one relaxation time, the velocity
defect Eq. (20) has a simple interpretation: the area
between the rain and air velocity profiles in the column
at any time is equal to the corresponding area after one
relaxation time [approximately the column depth —w /A
times a velocity defect in which v, = V (value when
drops cross shear zone) and v, = 0 (undisturbed air
velocity value)].

The solution of the initial value problem (13) and
(14) is obtained in appendix A as

Z >0,
-T<—Z/w, <0, 21)
—Z/w, < —-T<0.
Nondimensionalizing variables as Z* = —\Z/w, (Z*

and Z have same sign since w, < 0, A > 0), 7% = AT, and
v¥ = v,/V, (21) becomes

zZ* >0,

(22)

¥ < =T* <.
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Fi1G. 1. Contour plots of (top) v,/V and (bottom) v,/V for heavy rain falling through a
shear zone. Rainwater mixing ratio g, = 0.003. Drop diameter D = 2 mm.
A simpler expression is obtained for the local derivative
of v¥:
0, Z# >0,
o —q,TH+(1-g,) 7 W+ 79 —T*<Z%<0
m - q.e 10[2 _qu (T +Z )]7 ’ (23)
0, 7 < =T* <.

For the results presented herein, / is evaluated with the
first ten terms of its ascending series representation for
arguments less than 10, and with the first four terms of
its asymptotic expansion for arguments greater than 10.
The integral in (22) is evaluated with the trapezoidal
formula.

As an illustrative example, consider heavy rainfall
with mixing ratio g, = 0.003 kg rainwater per kg dry air,
drop diameter D = 0.002 m, and drop density p, = 10°
kg m ™~ falling through a shear zone at z = 3 km. The
standard atmosphere pressure, density, and tempera-
ture at this level are p ~ 700 mb, p, ~ 0.91 kg m > and
T, ~ 268.6 K, respectively, and the dynamic viscosity
(which varies only with temperature) is w ~ 1.7 X 1073

kg m~! s7' (Kundu and Cohen 2002). The terminal
velocity of the drops as estimated from Fig. 7 of Beard
(1976) is w, ~ 7.7 m s~ . The corresponding Reynolds
number is Re ~ 820, and the drag coefficient as esti-
mated from (3-225) of White (1991) is C, ~ 0.48 [see
also Fig. 2 of Stout et al. (1995); and curve 1 of Fig. 5 of
Beard (1976)]. Equation (9) then yields A ~ 1.26 s~
These data and the parameters for a variety of moder-
ate-to-heavy-rain scenarios are summarized in Table 1.

Contour plots of the air velocity v, as calculated from
(21) and rain velocity v, as computed as a residual from
(12) are presented in Fig. 1. Vertical profiles of these
variables at two times (2 and 15 min after onset of
rainfall) are shown in Fig. 2. Qualitatively, we see that
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0.0 = 0.0
-5, -5.0 F
5.0 //vr/V
-10.0 —-10.0 |
Z (m)
-15.0 -15.0
—-20.0 —-20.0 r
—-25.0 —-25.0
-30.0 —-30.0 r
~35.0 -35.0 | ;

0.0 0.2 0.4 06 0.8 1.0

Nondimensional velocity

0.0 0.2 04 06 08 1.0

Nondimensional velocity

FI1G. 2. Air and raindrop velocity profiles at (left) 7 = 2 min and (right) 7 = 15 min. Solid lines
depict profiles of v,/V. Dashed lines depict profiles of v,/V.

for the first few minutes after the onset of the rain there
is a substantial lag of the air velocity behind the rain
velocity. However, during the last few minutes shown in
Fig. 1 and continuing through later times (not shown),
this lag is reduced to ~10%. Also, during the last few
minutes shown in Fig. 2 and at later times (not shown),
both v, and v, exhibit a slowly varying dependence on z,
with the zone of maximum shear descending at a nearly
constant rate of ~0.02 m s~ '. From (12) we see that if v,
were exactly equal to v,, then v, would not change with
time. The descent speed of the shear zone is associated
with this small but persistent lag.

Returning to the nondimensional description, Z#(t)
is defined as the height of the maximum wind shear.
Differentiating (23) with respect to Z* (for —T% < Z*),
and applying the recursion formula dly(n)/dn = I,(7n),
we get,

2 %
v — g, T (-2

STRazE g1 —gq,e

X L2\ —q,Z*(T* + Z¥)]
Carerianze VAT +27%)
X L[2\/~q,Z*(T* + Z*)). (24)

Setting 9*v*/0T*9Z* = 0 at Z* = ZF we find that Z}
must satisfy

—q,e

(1 = g2\ —q,ZKT* + Z})] =

VT +2Z)

L2/ =q,Z{T* + Zp)).  (25)

Since 0 = g, < 1 and the modified Bessel functions are
positive for positive real arguments, we find that if Z¥
exists then

T + 275 > 0. (26)

Attention is restricted to arguments n = 2\/ —q,Z7(T*
+ Zj) large enough to safely use the asymptotic ap-

proximations: Io(n) ~ I;(n) ~ (2mm) " " [the ap-
proximated values of I,(n) and /,(n) are in good agree-
ment with the tabulated values for 1 = 4 (the relative
errors in the approximated values of I, and [, at m = 4
are within ~4% and ~12% of their respective tabu-
lated values, and the errors decrease rapidly with in-
creasing m). Applying these asymptotic formulas in
(25), squaring both sides, and solving the resulting qua-
dratic equation for Zf, results in,

P T*l 1-gq,
N RV

@7)
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In view of (26) we must choose the negative root in

(27). It follows that ZF ~ —¢q,T*(1 + q,)"" ~ —q,T%,
and the descent speed of the shear zone is C* = dZj/
dT* ~ —gq,. In dimensional terms, the descent speed is

the terminal velocity reduced by a factor of the rainwa-
ter mixing ratio,

C~qw, (28)
Here, C is independent of time, and depends on the
drag only implicitly, that is, through the terminal veloc-
ity.

To determine the range of times for which (28)
is valid, apply Z¥ = —gq,T* in the inequality
2\/ —q,Z}(T* + Z}) > 4, and rearrange the result. We
obtain T* > 2/[q,(1 — q,)] ~ 2/g,, or, in dimensional
terms, T > 2/(Aq,).

Applying (28) with the restriction 7' > 2/(Aq,) to the
heavy rain case considered in this section, we obtain a
propagation speed C ~ 0.023 m s~ ! for times 7 > 530 s.

This estimate is consistent with the propagation speed
from the full solution evident in Fig. 1.

4. Uniform shear flow

Guided by the behavior of the solution of the initial
value problem, the evolution of uniform shear profiles
for the air and raindrops is considered. Vertically
propagating solutions of the form, v, = A (Z — CT) +
F,and v, = B(Z — CT) + E are sought , where A and
B are constant shear parameters, and C is a constant
propagation speed (C < 0 for descent). Substituting
these forms in (11) and (12), we obtain —BC + Bw, =
MA -=B)(Z—-CT)+ F—FE]and —CA = —q, M\(A
— B) (Z — CT) + F — E], which can only be satisfied
forB=A,E=F— (CA/q\),and C = qgw/(1 + q,) ~
g w,. Thus the shear values are the same for both the air
and raindrops, and the descent speed C is the same as
in the initial value problem, namely Eq. (28). Omitting
the parameter F (which is superfluous since it shifts the
air and rain velocity profiles an equal amount), the so-
lutions can be written as

v, = A(Z - CT), (29a)

=AZ-C cA
vV, = ( - T)_q)\

¥

(29b)

The air and raindrop velocity profiles (29a) and (29b)
are identical apart from an additive constant, Av=v, —
v, = —CA/(g,)\). This velocity offset is well approxi-
mated by

Av~ —w,A/\. (30)
Taking into account notational differences [and recall-
ing that A = —g (1 — p/p,)/w,] it can be shown that (30)
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is equivalent to the corresponding formula for the ve-
locity offset in the case of one-way coupling, Eq. (10) of
Khain and Pinsky (1995). Remarkably, provision for
two-way coupling in uniform shear flow results in a
slow descent of both air and rain velocity profiles, but
leaves the velocity offset unchanged from its value in
one-way coupling.

Also, the rain velocity profile can be brought into
correspondence with the air velocity profile by shifting
it upward, that is, v(Z — AZ, T) = v,(Z, T), where AZ
= —Cl(g,\) ~ —w/\ (positive since w, < 0). As dis-
cussed in section 3, —w,/A (and thus AZ) is the vertical
distance a drop falling at terminal velocity traverses in
one horizontal relaxation time.

In view of (9), these height and velocity offsets can be
rewritten as

Av~ AAZ. (31)

The height-offset AZ is independent of the wind shear.
For the heavy rain example considered in section 3, AZ
~ 343 m.

5. Periodic vertical shear

An analysis of the two-way drag interaction within a
realistic model of turbulence (i.e., one representing a
realistic energy cascade within a three-dimensional flow
field) is beyond the scope of the present investigation.
However, as a preliminary step toward such an analysis,
the effect of the drag interaction on periodically varying
shear profiles of various vertical wavenumbers is con-
sidered. For convenience, each wavenumber mode will
be referred to as an eddy, but bear in mind that these
eddies do not interact with each other (linear system)
and are a drastic idealization of real-world turbulent
structures.

This analysis of two-way particle interaction with ed-
dies of various vertical wavenumbers parallels the one-
way theory developed in Stackpole (1961) and Bohne
(1982). Bohne analyzed particle response in the time
domain (Lagrangian framework, following raindrop
motion) and imposed a particle-relative air velocity in
the form a temporal oscillation with specified fre-
quency. In view of Taylor’s frozen turbulence hypoth-
esis, this assumed Lagrangian form was equivalent in
the Eulerian viewpoint to a steady-state air velocity
profile of specified vertical wavenumber. Particle re-
sponse to single-wavenumber eddies could readily be
extended to a population of eddies of various wave-
numbers via the superposition principle for linear sys-
tems. In the present study, a vertical wavenumber is
specified, but it is anticipated that the eddies may un-
dergo a drag-induced propagation and temporal decay.
Consider provisional (trial) solutions of the form
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v, = A(T) sin[k(z — ¢T) + 8],
v, = B(T) sin[k(z — c1)],

where A and B are the time-dependent amplitudes, c is
the phase speed, k is the wavenumber, and & is the
phase shift between the air and rain velocity profiles.
Without loss of generality, 6 can be restricted to the
range 8 € [0, 7] (phase shifts beyond this range could be
relocated within this range by redefining 6 and A). Be-
cause of the linearity of (11) and (12) one can envision
(32a) and (32b) as governing the kth wavenumber
mode of a flow comprised of a collection of eddies of
various wavenumbers superimposed on a background
shear flow given by (29a) and (29b).

Substituting (32a) and (32b) into (11) and (12), ex-
panding the resulting equations with the addition for-
mulas for sin(¢ + 8) and cos(¢p + 8) [where ¢ = k(z —
ct)], and collecting terms with common factors of sin¢
and cos¢, we obtain

(32a)
(32b)

dA
a cosd + ckA sind — kw,A sind = A(B — A cosd)
(33)
dA )
s sind — ckA cosd + kw,A cosé = —\A sind, (34)

dB
—== —q,MB — A cosd),
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In order for (32a) and (32b) to be legitimate solutions
of (11) and (12), A, B, ¢, and & must satisfy (33)—(36) or
equations derived from them.

Applying (36) in (35) yields dA/dT = —A(q,\ + ck
cotd), which has the solution,

A(T) — A(o)ef(q,)\ﬂw'k COlS)T. (37)
As we will see, g,A + ck cotd > 0, so (37) describes a
temporal decay.

Applying (37) in (34), and rearranging, we obtain

1 - q,)

cotd = k(ZC——W,) .

(38)

With & considered in the range & € [0, 7], only the
principal value of cot™! needs to be considered when
obtaining & from (38). Applying (36) and (37) in (33),
yields a second relation for 8,

2
r

cA(1 — q,) — c*k cotd + kc(c — w,) tand = — X

tand.
(39)

Eliminating & from between (38) and (39), we obtain a
quartic equation for c:

ar (1= q,Pcw, — ©) = q,2c — w,)
(35) 2
q,\ sind — S cw, — )2 —w)%  (40)
) s - — A
ck
(36) As shown in appendix B, the solution of (40) is
W 1 2 _ )\_2 2 2 )‘_2 2 : _ 16%)‘2”)12
C—2+2\/§\/W[ k2(l+qr) + w,+k2(l+qr) 2 41)

Appendix B also shows that for g, < 1, (41) is well
approximated by

o~ (42)
1+ EPw?a?
Since g, < 1 holds even in cases of extreme rainfall, the
approximate solution (42) should be very accurate for
meteorological purposes. Equation (42) shows that c is
much less than w, for all wavenumbers. The upper
bound on the propagation speed is g,w,, and this maxi-
mum speed is approached for eddies of vanishing wave-
number, that is, in the limit of infinite wavelength. This

upper bound is the same as the propagation speed of
the uniform shear flow in section 4 and the asymptotic
propagation speed in the initial value problem in sec-
tion 3.

Since ¢ < w,, (38) is well approximated as cotd ~
—M(kw,), and sin & is well approximated as

1

sind~ 4 [———————
1+ N/(k*w?)

(43)

(positive root since 8 € [0, m]). Thus, for small eddies (k
> Mw,), the air velocity lags the rain velocity by a quar-
ter of a wavelength, 6 ~ m/2, while for large eddies
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(k < Mw,), the air velocity lags the rain velocity by only
a slight amount, 6 ~ k [w,|/A < 1.
Applying (43) and (42) in (36), we obtain

B~"\/1+ IPwY)\A.

Taking into account notational differences [and again
using A = —g(1 — p,/p,)/w,], it can be shown that (44) is
equivalent to (10) of Stackpole (1961) and (8) of Bohne
(1982). Thus, even though two-way coupling results in a
temporal decay of the rain and air velocity amplitudes
A and B, the ratio of these amplitudes is the same as in
the case of one-way coupling.

Returning to (37), we see that the e-folding decay
time scale is

(44)

1

.= g\ + ckcotd’ “5)

In view of (42) and the approximation cotd ~ —\/(kw,),
(45) can be rewritten as

T~ (1+ » 0
A~ > 0.
g K*w;

(46)

Thus, the decay times 7, decrease inversely with in-
creasing mixing ratio. For fixed mixing ratio, the decay
times decrease with increasing wavenumber (decreas-
ing wavelength 277 k'), and approach the value (g,A)
in the limit of vanishing wavelength. The decay times in
this small-wavelength limit are given in Table 1 for a
range of drop diameters and rainwater mixing ratios
generally characteristic of moderate to heavy rainfall.
The behavior of 7, as a function of wavelength for
these parameters is depicted in Fig. 3. The decay times
vary with drop diameter in an intriguing manner: at
small wavelengths, the smallest decay times are found
for the smaller drops, but at large wavelengths, the
smallest decay times are found for the larger drops. For
any fixed drop size, the curve of decay time versus
wavelength tends to flatten as the mixing ratio in-
creases. Accordingly, the scale sensitivity of the decay is
reduced at the higher mixing ratios.

As mentioned above, this transient analysis is pre-
liminary, and should be amended for flows character-
ized by a fully turbulent high Reynolds number energy
cascade. Since eddy turnover times are generally
smaller than the drag-decay times given by (46) (e.g., an
eddy with a 50 m radius and a 5 ms™ " velocity scale
would have a ~60 s turnover time compared with a
drag-decay time of ~600 s), it is unlikely that the direct
effect of turbulence on any specific wavenumber mode
would be as great as indicated in this analysis. However,
the effect of drag on a downscale energy cascade should
be cumulative, and one may speculate that the greatest
impact may still be seen at the higher wavenumbers.
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Although a transient analysis of this problem is beyond
the scope of this study, a simple qualitative analysis of
the impact of drag on the energy transfer rate can be
done for the stationary state. Restricting attention to
wavenumbers small enough that dissipation is negli-
gible (k < k, where ki ' is on the order of 1072 m) but
large enough that energy production is negligible (k >
ko, where k, ! is on the order of 10> m), the energy-
spectrum balance equation (Pope 2000) with a drag pa-
rameterization is

(47)

Here E is the energy-spectrum function, F is the spec-
tral energy transfer rate, and the drag has been param-
eterized as E/T, [T, given by (46)] so that in the absence
of an energy transfer, the solution of (47) would be a
temporally decaying energy-spectrum function with e-
folding time T,. We seek the downscale/upscale energy
transfer ratio F(k,)/F(k,) at times long enough after the
onset of heavy rain that a stationary energy spectrum
has been re-established, that is, when (47) has only drag
and energy-transfer terms. In the absence of drag, F is
constant across the inertial subrange [F(k,) = F(k,) =
dissipation rate €] so F(k,)/F(ky) = 1. In the presence of
drag, F(k;) can be obtained by integrating (47) from k
to k;. Although it is not known how the energy-
spectrum function is reduced in heavy rain, the Kol-
mogorov spectrum should be at least qualitatively valid.
Applying E = ag”®k™>? (a = 1.6 is a universal con-
stant) in [ kl(E/T) dk, introducing the variable &(k) =
(w kA3, and using Eq. (165.11) of Dwight (1961), we
find

&(k)
F(ky) = Fko) —zq»”asmwfﬂ f [&(£ + 1] dg,
&(ko)

1 1-¢+8
= Flko) =5 q»”as”w?“[6 = f g)f

— (k1)
28 1] )
\f V3 i
In heavy rain, & is on the order of 10% and &, is on the
order of 107", In this case the error committed in (48)
by replacing &(k;) by % and &(k,) by 0, can be shown to
be quite small (generally less than 10% for & in the
range 10 * — 107! m?s~?). Making these approxima-
tions in (48), normalizing the result by F(k,), and ap-
plying F(k,) = e on the right-hand side, we obtain

Fky) @

Fky) ~ BT

13,
A

1/3Wt2/"3‘ (49)
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Thus, the downscale reduction of the energy transfer
rate becomes more pronounced at higher rainwater
mixing ratios and lower dissipation rates. We calculate
the energy transfer ratio (49) for the heavy rain param-
eters considered in section 3 (g, = 0.003, w, = 7.7 ms ™,
and A = 1.26 s!), and several observed dissipation
rates. Brewster and Zrnic (1986) report dissipation
rates in the range 1072 — 10~ ! m? s for a severe Okla-
homa thunderstorm, which would correspond to heavy-
rain energy transfer ratios of 0.83-0.92. Meischner et al.
(2001) report dissipation rates in several strong and

weak thunderstorm cells generally in the range 10~* —
10" m? s~3, which would yield energy transfer ratios of
0.21-0.92. Chapman and Browning (2001) report dissi-
pation rates in precipitating frontal zones in the range
107* — 1072 m? s? with a spatially averaged value of
107® m? s, which would correspond to energy transfer
ratios of 0.21-0.83, with an average value of 0.63. These
values suggest that drag may be important in reducing
the high-wavenumber energy transfer rates in thunder-
storms and precipitating frontal zones in heavy rain
conditions.
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6. Summary

A simple theory was presented for two-way drag cou-
pling between air and raindrops in moderate to heavy
rainfall. The coupled equations of motion for the hori-
zontal velocity components of the air and raindrops
were solved analytically for the case of (i) initial step
change in velocity, (ii) uniform shear profile, and (iii)
periodically varying vertical shears of various wave-
numbers. The solution of (i) indicated a decay of the
initial velocity discontinuity followed, at later times, by
a slow descent of the shear zone at a speed C = q,w,,
where ¢, is the rainwater mixing ratio, and w, is the
terminal velocity. In the case of uniform shear, both air
and rain velocity profiles descended at the same speed
C = g,w, as in the later stages of the initial value prob-
lem (i). Formulas were obtained in the uniform shear
case for the shift in velocity (or height) that would bring
the air velocity profile into correspondence with the
rain velocity profile. The velocity offset was found to be
the same as in the case of one-way coupling (Khain and
Pinsky 1995).

The analysis of periodically varying vertical shears
may be considered a preliminary step toward a more
realistic analysis of turbulent flows. The relation con-
necting the amplitudes of the air and rain velocities [Eq.
(44)] was found to be the same as in the one-way cou-
pling studies of Stackpole (1961) and Bohne (1982).
However, unlike the one-way coupling studies, provi-
sion for two-way coupling leads to a smoothing of the
velocity gradients (and a slow descent of the profiles).
A key result is a formula [Eq. (46)] for the decay time
as a function of mixing ratio, drag parameter, and
wavenumber. The decay times decrease with decreas-
ing wavelength, and approach a value equal to the re-
ciprocal of the product of the rainwater mixing ratio
and a drag parameter. For the smallest-scale structures,
the decay times are on the order of a few minutes
for moderate to heavy rainfall. However, since realistic
turbulent eddies lie within an energy cascade, we
should anticipate that the inexorable churning of
larger eddies into smaller eddies would partially miti-
gate the temporal decay forced by the drag interac-
tion. High-resolution numerical modeling may be the
most appropriate tool to study this more realistic prob-
lem.
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APPENDIX A

Solution of the Initial Value Problem

The initial value problem (13) and (14) is solved for
a step change in velocity profile with the method of
Laplace transforms (e.g., Doetsch 1961; and other stan-
dard references). Multiplying (13) by e *7 and integrat-
ing over time from 7 = 0 to T = %, we obtain a first-
order ordinary differential equation for ¥ = L(v,) =
Jov.e ™" dT, the Laplace transform of v,,

do
w/(s + Agq,) 17 +sls + Mg, + 1)]o
du, Jvy, 1 _0
Uy + o7 +[s + Mg, + D]y, 0
(A1)

Applying the initial data (14) and dv,(Z, 0)/0T = 0 [the
latter obtained by applying (14) in (12)] in (Al) we
obtain,

do
dz
= Viwd(Z) +[s + Mg, + DIH(Z)} = 0,

w(s + Aq,) 55 + s[s + A(g, + DD

(A2)

where 8(Z) = dH/dZ is the Dirac delta function.

For Z > 0, the solution of (A2) is ¥ = V/s, and the
inverse transform yields the expected result, v,(Z, f) =
V. For Z < 0 the solution of (A2) is readily found to be,

. s[s + Mg, + 1]

=« exp{ — s+—)\q, ZIw,(, (A3)
To evaluate «, integrate (A2) with respect to Z from —¢
to & (where & > 0). In the limit ¢ — 0 we obtain the
jump condition,

AT — A7) —
9(0") — 6(07) SF A (A4)
Since ¥(07) = a and v(0") = VJs, it follows from (A4)
that, @« = VAAg,/[s (s + Aq,)]. With « thus determined, v,
is obtained as the inverse transform of (A3),

Z/wt} >

(AS)

1/ Vg, sls + Mg, + 1)]
v, = ——expi————————
s(s + Aq,) s+ Aq,
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Rewriting the curly bracketed term in (AS5) as, Im(o)

sls + Mg, +1

- M Ziw, = —sZ/w, — NZ/w, o— p]ane
s+ Aq, [ ———
+ X, Z/ A6
s + )\qr wt7 ( ) R—) o3} R
(AS) becomes
N\
v, = V)\q,ef)‘Z/ e
—sZ/wy 1 )\261
X -1 r )
L [ s s+ Ag, eXp(S +Aq, Z/W’” X Re(o)

(A7)
Applying the convolution theorem to (A7), we obtain

T

v, = VAg,e ™ j F(1)G(T — 7) dr,

0
e*SZ/W[
S 9

2
G(T)=L" ! exp 4, zZw, | |.
s+ A\q, s+ Ag, !

(A8)

where

F(T) = L_1<

(A9)

It can readily be shown that F(T) = H(T — Z/w,). To
evaluate G(T') we use the Bromwich integral,

G 3 1 ctix eST )\qu P p
(1) = 2mi )., s+ Mg, KP\s T \q, Wi ) ds,

(A10)

where c is any real number large enough that all singu-
larities of L(G) lie in the complex half-plane to the left
of ¢. Changing variables to o = s + Aq,, (A10) becomes

e*)\qu CcHAGytio eU’T /\qu , d
i p exp p /w, | do.

ctAGy—ie

G(T) =

(A11)

We extend the integral in (All) to the closed contour
consisting of the original path of integration (line par-
allel to the imaginary axis), and a semicircle of infinite
radius affixed to (and to the left of) this path (Fig. A1l).
This closed contour encloses one singularity, an essen-
tial singularity at o = 0. Since the integral vanishes on
the semicircle, the integral in (All) along the original
path is equal to the integral over the closed contour,
and the residue theorem yields

oT

2
_ xarT e Aq,
G(T)=e XR:eg exp Ziw, | |. (A12)

(o g

__

FiG. Al. Closed contour in complex o plane used to evaluate
the Laplace inversion integral (All). The contour encloses an
essential singularity (denoted by X) at o = 0.

Expanding e°” and exp[A°q,Z/(w,0)] in Laurent series
about the singularity, (A12) becomes

G(T)=e 7" x Resao[ > D gt

m=0 n=0

s 2 n
P (N g, Ziw)" |. (A13)

The residue (coefficient of 1/) is the sum of terms for
which m = n, and can be put in the form

S T” 2 n
> T WaZw)" =
n=0"rt.
= AN/ q,TZiw)™"
20 Tnt =1,2\\/q,TZ/w,), (Al4)

where I, is the modified Bessel function of the first kind
of order zero (Abramowitz and Stegun 1964).
Collecting results, (A8) becomes

T
v, = VAg,e " f H(t — Z/w,)
0

X e MO 0NN/ q (T — 7\ Z/w) dr.  (A15)

Applying the definition of H in (A15), and recalling
that v,(Z, tr) = V for Z > 0, the full solution for v, can
be written as
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v, Z > 0.
NGAT—Z/wy)
v, =3 Ve ™ j e “I,2\/\Zu/w,) du, -T<-Zw, <0, (A16)
0
0, —Z/w, < —=T<N0.
APPENDIX B Solving (B1) for G, we obtain

Solution of the Quartic Equation for ¢
As shown in section 5, the phase speed c for vertical
propagation of eddies of wavenumber k in the presence
of rainfall satisfies (40), a quartic equation. Fortunately,
this quartic equation can be rewritten as a quadratic
equation for a quadratic function of ¢, namely,

2 2 A 2 2)\2
G +G w,+ﬁ(l+q,) +4quzP:0, (B1)

where

G =d4c(c —w)). (B2)

G

1 A2
= —E[W?Jrﬁ(l + q,)z]

1 Az 2 16g,2°w?
+ 5\/[‘4’:2 T qr)2:| - Tt

where we have chosen the positive branch of the solu-
tion (it can be shown that the negative branch would
yield a complex value for c¢). Solving (B2) for ¢ and
making use of (B3), we obtain

(B3)

e, 1 2 A2(1+ )2 +
C =7 — = w, ——5 ,
2 2 st

where we have again chosen the positive branch of the
solution [the negative branch does yield a real value for
¢ (¢ = w,), but such a solution corresponds to B ~ A/q,,
a nonmeteorological scenario in which the rain velocity
is several orders of magnitude greater than the air ve-
locity].

A useful approximation to (B4) can be obtained for
q, < 1. First, rewrite (B4) as,

oW,
2 2
16q, X
X I-0+0+x0) /177 >
(1 +4q)" (1 +x)
(B5)
where
2

x= o ta) (B6)

Since the maximum value of x/(1 + x)? is 1/4 (obtained
at x = 1) and since ¢, < 1, we see that

16q, x 4q,

A+qr A+ (A+a)

<d4q,<1. (B7)

Thus, we may safely impose the binomial approxima-
tion to the innermost radical in (BS). After some rear-
rangement, we obtain

Az 2 16g,2°w?
‘J[sz + P (1 + qr)2:| - k2 - (B4)7
w, wl 4q, x
T2 \/1(1+q,>21+x‘ (B8

Since the maximum value of x/(1 + x) is 1 (approached
as x — @), we see that

4q, X 4q,
(1+g)l+tx (1+gq,)

<1. (B9)

Accordingly, we can impose the binomial approxima-
tion in (B8), obtaining

2q,
(1+gq,)1+x

w, |w,l
22 [1
Substituting in (B6) for x, using the fact that w, is nega-

tive, and applying the approximation (1 + g,)* ~ 1,
(B10) becomes

C =~

}. (B10)

qa:

c~—. Bl11
1+ KPw?/\? B1)
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