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The general 2nd order linear constant coefficient ODE is  

 

   

d2u
dt2 +Adu

dt +Bu =C ,       (1) 

 
where A, B, and C are coefficients (considered here as constants), 
u is the dependent variable, and t is the independent variable. 
Often we'll think of t as time. But can have space (x, y, or z) in 
place of t, and v (or T or p or whatever) in place of u; the equation 
is basically the same, no matter what you call the variables. 
 

The general solution of (1) is the solution that includes all 
possible solutions of the equation. From the theory of ODEs, the 
general solution must contain two arbitrary constants. 

 
Often we seek a particular solution of (1), that is, the solution 

of (1) that satisfies initial conditions: u and du/dt are specified at 
t = 0 (or one can impose conditions at two points, e.g., at t = 0 and 
at t = 1 hr). Different initial conditions lead to different solutions. 
If we work with x, y, or z instead of t, we discuss boundary 
conditions instead of initial conditions, but the idea is the same. 

 
In practice, to find a particular solution, you first need to find 

the general solution, and then adjust the two arbitrary constants in 
it so that the initial conditions are satisfied. 

 
Equation (1) includes a term that does not have the dependent 

variable in it (term C has no u in it). We call such an equation 
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"nonhomogeneous" or "inhomogeneous". So (1) is a 2nd order 
linear constant coefficient inhomogeneous ODE. The version of 
(1) without the inhomogeneous term, 
 

d2u
dt2 +A

du
dt +Bu=0 ,       (2) 

 
is a 2nd order linear constant coefficient homogeneous ODE. 
 

We'll review the solution procedure for (2) and then review the 
procedure for (1). Actually, the basic procedure is illustrated more 
simply by working with an equation even simpler than (2): 
 

   

d2u
dt2 +Bu =0 ,         (3) 

 
Yeah, lets work with this (3) instead of the messier (2). 

 
We've seen that the solution of linear homogeneous 1st order 

ODEs (e.g.,  du/dt+Bu=0 ) is an exponential. It turns out that 
exponentials also work in the 2nd order case, but these may be 
complex and thus lead to sines and cosines (via Euler's formula). 
So consider the trial solution (try it and see if it works) in the form 

 
u=e!t ,          (4) 
 

where  !  is an as-yet-unknown constant. Plug (4) into (3),  
 

 d2e!t
dt2 +Be

!t =0 ,           use fact that     d(e!t)/dt =!e!t   (twice) 

 

    ! !2e!t +Be!t =0   divide by common factor of   e!t  
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!2+B=0  
 
    !2 =!B     take square root 
 
!=± !B  
 

Taking the square root gives us two possible ! . We need both in 
the general solution. The general solution is a linear combination 
of the two possible trial solutions: 
 
 

   
u(t)=c1e

!B t +c2e
! !B t ,      (5) 

  
where c1  and 

  
c2  are arbitrary constants. 

 
If B is negative then !B  is positive and   !B  is a real 

number. When we impose the initial conditions in (5) to obtain c1  
and 

  
c2 , we find that c1  and 

  
c2  are real. 

If B is positive then !B  is negative and !B = i B  is 
imaginary. The exponentials in (5) are thus of the forms ei B t  and 
  e!i B t , which are related to sines and cosines via Euler's formula: 

 
    ei B t = cos Bt+i sin Bt ,   e!i B t = cos Bt!i sin Bt .   (6) 

 
These exponentials are complex. It turns out that for u to be real, 
the c1  and 

  
c2  must also be complex. To see what's going on (and 

see why it's not a problem), consider the following example: 
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Example: Inertial motion in the atmosphere 
Consider the horizontal equations of motion for an air parcel 

moving under the influence of the Coriolis force (only), 
 

  
du
dt = f v ,          (7) 

 

dv
dt =!fu ,          (8) 
 

where f is treated as a constant. Taking d/dt of (8) yields  
 

d2v
dt2
=!f du

dt
.          (9) 

 

Into (9) plunk in du/dt from (7). We thus obtain the 2nd order linear 
constant coefficient homogeneous ODE: 
 

 
   

d2v
dt2

=!f 2v .         (10) 
 

Seek solutions of the form    v =e!t . Applying it in (10) yields 
 

!2e!t =!f 2e!t .                Divide by e!t   
 

    !
2 =!f 2 .    Take the square root 

 

!=±i f  
 

So the general solution for v is of the form 
 

   
v(t)=c1e

if t +c2e
!i f t .        (11) 
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Apply Euler's formula to each of the exponentials in (11), get 
 

   
v(t)=c1 cos f t + i sin f t( )+c2 cos f t ! i sin f t( ).  (12) 

 
Group together cosines with cosines, sines with sines: 
 

   

v(t)= (c1+c2)
!

cos f t + i(c1"c2)
!

sin f t .   (13) 

        d1       
  
d2  

 

We don't know what c1 or 
  
c2 are. They're just "some constants". 

So if you add them together you get "some other constant". Call it 
d1. Similarly let 

  
d2  be the name for i (c1!c2). So (13) becomes: 

 
v(t)=d1cos f t + d2 sin f t .       (14) 

 
No need to work with c1 or 

  
c2 anymore. Just work with d1 and d2 . 

Infer them from the initial conditions. For example, suppose 
 

 v(0)=10ms!1 ,        (15a) 
 

and 
 

   

dv
dt

t=0

=0ms!2 [from (8) it means    u(0)=0ms!1]  (15b) 

 

Setting t = 0 in (14) and using (15a) yields: 
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v(0)
!

=d1 cos0
!

+ d2 sin 0
!

=d1  
   
! d1 =10ms"1  

    10ms!1         1                 0 
 

Now take d/dt of (14), and then set t = 0 (and use (15b):   
 

   

dv
dt

=!d1f sin f t + d2f cos f t  

 

dv
dt t=0
0

=!d1f sin0!
0
+ d2f cos0!

1
=d2f   ! d2=0  

 
Applying these d1 and d2  values in the general solution (14) yields 
the solution of our problem: 
 

 
   
v(t)=10ms!1cos f t  

_________________________________ end of example. 
 
 

Now consider the inhomogeneous ODE, 
 

d2u
dt2 +Bu=C ,         (16) 

 
We've already obtained the general solution of the homogeneous 
version of it [(3) is the homogeneous version of it, and (5) was the 
general solution of (3)]. For brevity, we refer to that solution as 
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the homogeneous solution uh . So (5) says that 
 
 

   
uh(t)=c1e

!B t +c2e
! !B t  

 
To get the general solution of (16), find any particular solution 

 
up  

of (16) and then add it to the homogeneous solution 
 
uh  of (16). 

 
 In the more general case where C is time dependent, one can 
find a particular solution using variation of parameters. But in this 
review handout, we're treating C as constant so there's no need for 
variation of parameters. In this case the particular solution is just 
some constant. Plug up=const  into (16). Get 
 

d2
dt2(const)+B(const)=C .     

 
The first term is 0 since the derivative of a constant is 0. Now, you 
can tell from inspection that    const =C /B . 
 

So the general solution of (16) is: 
 

  
u =up +uh  

 

     =C
B
+c1e

!B t+c2e
! !B t  

 
____________________________________ 
 
Qualitative behavior of solution of (3) for B > 0 and B < 0. Done 
on board. Time permitting. 


