METR 3123, Atmospheric Dynamics II LECTURE 25

Circulation Theorem

Consider any arbitrary closed curve drawn in the flow:

This curve is composed of fluid. As time goes on, this curve moves with the flow and distorts in shape, but it's always composed of same fluid elements. It's a <u>material curve</u> (curve that's always composed of same fluid elements).

e.g.: a closed material curve at dif times:

In general, the circulation around the closed material curve is a function of time:

$$C(t) = \oint \vec{\mathbf{u}} \cdot \vec{\mathbf{d}} \vec{l}$$

Lets find an expression for rate of change of absolute circulation around a material curve [equivalent to rate of change of area-integrated absolute vorticity via Stokes thm]

$$C_{a}(t) = \oint \vec{u}_{a} \cdot \vec{d}\vec{l}$$
 origin of coord system \vec{l} is positive vector

$$\begin{split} \frac{D_{a}C_{a}}{Dt} &= \frac{D_{a}}{Dt} \oint \vec{\mathbf{u}}_{a} \cdot \vec{\mathbf{d}} \vec{l} \\ &= \oint \left[\frac{D_{a}\vec{\mathbf{u}}_{a}}{Dt} \right] \cdot \vec{\mathbf{d}} \vec{l} + \oint \vec{\mathbf{u}}_{a} \cdot \left[\frac{D_{a}}{Dt} \vec{\mathbf{d}} \vec{l} \right] \xrightarrow{} \mathbf{d} \left(\frac{D_{a}\vec{\mathbf{l}}}{Dt} \right) \rightarrow d\vec{\mathbf{u}}_{a} \end{split}$$

use eqn of motion (neglecting friction):

$$\frac{D_{a}\vec{u}_{a}}{Dt} = -\frac{1}{\rho}\nabla p + \vec{g}, \text{ where } \vec{g} = -g\hat{k} = -\nabla(gz) = -\nabla\Phi$$

$$\therefore \frac{D_{a}C_{a}}{Dt} = -\oint \frac{1}{\rho}\nabla p \cdot d\vec{l} - \oint \nabla\Phi \cdot d\vec{l} + \oint \frac{\vec{u}_{a} \cdot d\vec{u}_{a}}{\downarrow}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\frac{DC_{a}}{Dt} \text{ since } C_{a} \text{ is a scalar}$$

$$\frac{1}{2}d(\vec{u}_{a} \cdot \vec{u}_{a})$$

Scratch paper: How does p vary across the line element dl?

Use Taylor expansion for p_B about point A.

$$p_{B} = p_{A} + \frac{\partial p}{\partial x} \Big|_{A} dx + \frac{\partial p}{\partial y} \Big|_{A} dy + \frac{\partial p}{\partial z} \Big|_{A} dz$$

$$dp = p_{B} - p_{A} = \frac{\partial p}{\partial x} \Big|_{A} dx + \frac{\partial p}{\partial y} \Big|_{A} dy + \frac{\partial p}{\partial z} \Big|_{A} dz$$

$$= \nabla p \cdot \vec{d} \vec{l}$$
So $\nabla p \cdot \vec{d} \vec{l} = dp$

In general, change in any scalar over a directed distance \vec{dl} is:

$$d(\text{scalar}) = \nabla(\text{scalar}) \cdot \vec{d}\vec{l}$$

_end of scratch paper

$$\therefore \frac{DC_a}{Dt} = -\oint \frac{dp}{\rho} - \boxed{\oint d\Phi} + \frac{1}{2} \boxed{\oint d(\vec{u}_a \cdot \vec{u}_a)}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Phi_{endpoint} - \Phi_{startpoint} = 0 \qquad 0 \text{ for } s$$

 $\Phi_{\text{endpoint}} - \Phi_{\text{startpoint}} = 0$ 0 for same since end/start points are reason the same for a closed curve

$$\therefore \quad \frac{DC_a}{Dt} = -\oint \frac{dp}{\rho}$$
 Rate of change of absolute circulation is due only to baroclinic forcing.

Can show that in a barotropic fluid, $\oint \frac{dp}{\rho} = 0$. Then:

$$\frac{DC_a}{Dt} = 0$$
 Kelvin's Circulation Theorem.

so $C_a = const$ for a closed <u>material</u> curve.

Means that: "Absolute circulation is conserved following fluid motion in a frictionless barotropic fluid"

Now lets relate absolute circulation C_a to relative circ C:

$$C_{a} = \oint \vec{u}_{a} \cdot \vec{dl} = \oint \left(\vec{u} + \vec{\Omega} \times \vec{r} \right) \cdot \vec{dl}$$

$$\downarrow \qquad \qquad \downarrow$$

$$rel \ velocity \qquad pos^{n} \ vector \ (same \ as \ \vec{l} \)$$

$$= \oint \vec{u} \cdot \vec{dl} + \oint \left(\vec{\Omega} \times \vec{r} \right) \cdot \vec{dl}$$

scratch paper

Lets rewrite $\oint (\vec{\Omega} \times \vec{r}) \cdot \vec{dl}$ using Stokes thm.

Stokes thm:
$$\oint \vec{\nabla} \cdot \vec{dl} = \iint \hat{n} \cdot (\nabla \times \vec{\nabla}) dA$$
 for any vector $\vec{\nabla}$.

Let
$$\vec{\nabla} \equiv \vec{\Omega} \times \vec{r}$$
. Then: $\oint (\vec{\Omega} \times \vec{r}) \cdot \vec{dl} = \iint \hat{n} \cdot [\nabla \times (\vec{\Omega} \times \vec{r})] dA$

$$\therefore C_{a} = C + \iint \hat{\mathbf{n}} \cdot \left[\nabla \times (\vec{\Omega} \times \vec{\mathbf{r}}) \right] dA$$

$$\downarrow \qquad \qquad \downarrow$$

$$\text{rel circ} \qquad = 2\vec{\Omega} \quad \text{(done in prob set)}$$

$$\therefore C_{a} = C + \iint 2\vec{\Omega} \cdot \hat{\mathbf{n}} \, dA$$

 \hat{n} dA is tiny directed area element. Let dA_e be the <u>projection</u> of \hat{n} dA onto the equatorial plane (plane \perp to $\vec{\Omega}$):

$$dA_e \equiv \frac{\vec{\Omega}}{\Omega} \cdot \hat{\mathbf{n}} dA \quad [\frac{\vec{\Omega}}{\Omega} \text{ and } \hat{\mathbf{n}} \text{ are unit vectors}]$$

mult by 2Ω

$$2\Omega \, dA_e = 2\vec{\Omega} \cdot \hat{\mathbf{n}} \, dA$$

$$\therefore C_a = C + \iint 2\Omega dA_e \quad \text{Evaluate integral, get:}$$

$$C_a = C + 2\Omega A_e$$

absolute circ = relative circ + earth vort x total projected area

So Kelvin's circulation theorem says that for closed material curve moving in a frictionless, barotropic flow,

(absolute version):
$$\frac{DC_a}{Dt} = 0$$
 or $C_a = const$

(relative version):
$$\frac{DC}{Dt} + 2\Omega \frac{DA_e}{Dt} = 0$$
 or $C + 2\Omega A_e = const$

where A_e is the projection of the area enclosed by the material curve on the equatorial plane.