
LECTURE 29 
The Planetary Boundary Layer (continued) 

 

Parameterization of the PBL in NWP/climate models 
 

Numerical weather prediction (NWP) and climate models solve the equations of 

motion, thermal energy, and equations for moisture species on a computer. The 

equations are mostly prognostic (predictive; contain a local derivative !/!t ). The 

solution consists of integrating the governing equations with respect to time to get the 

dependent variables (u, v, w, T, etc) on fixed grid points or grid cells (or for a set of 

Fourier modes if a "spectral" code is used). 

Because of the relatively large grid spacing of most NWP/climate models most 

eddies in the PBL are too small to be resolved. NWP/climate models incorporate the 

effects of these eddies into their solution procedure by calling computer subroutines 

where these effects are parameterized. The parameterizations are developed 

theoretically from the following steps (isolated from main NWP/climate model code): 
 

 (1) Governing equations considered are not the same as the equations in the 

original NWP/climate model. They're usually expressed in a form appropriate for 

mesoscale modelling, and usually the Boussinesq approximation is made. 
 

(2) The governing equations are "averaged". The technique is called Reynolds 

averaging, and there are several variants. 
 

(3) The Reynolds-averaged equations contain unknown terms arising from 

unresolved (small-scale) motions including turbulent motions. Parameterization 

consists of relating these unknown terms to averaged variables. The theories for how 

to do it all have side effects. Parameterization is a necessary but dirty business.  

 

In the next few classes we'll look in detail at (1) and (2), and give an example of (3). 
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Large Eddy Simulation (LES) of the PBL 
 

By using the tools of Large Eddy Simulation (LES), you can numerically model 

many of the eddies in the PBL explicitly using high spatial resolution (say ~10 m grid 

spacing). But you are generally limited by computer resources to horizontal domains 

of a few 10s of km (instead of 1000s of km as in larger scale NWP). 

 

The governing equations in LES are usually expressed in a form appropriate 

for mesoscale modelling, and usually the Boussinesq approximation is made. 

 

The governing equations in LES are averaged (with an "LES filter") but the 

nature of the averaging is different from Reynolds-averaging. In LES much of the 

energy in the turbulent motion (eddies) is resolved, so you don't want to average it 

out. The LES filter is designed to remove scales associated with high-frequency 

(small scale features), and leave behind features that can be resolved. 

 

Direct Numerical Simulation (DNS) of the PBL 
 

In Direct Numerical Simulation (DNS), the governing equations are solved with 

a resolution high enough to resolve the smallest eddies (a few mm), but on very small 

domains (a meter or so). Obviously you can't model a realistic atmospheric PBL this 

way, but you can model a "virtual PBL", one associated with weaker forcings. 

 

The governing equations in DNS are usually expressed in a form appropriate 

for mesoscale modelling, and usually the Boussinesq approximation is made. 

 

The governing equations are solved without doing any averaging/filtering. 
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Equations of motion for mesoscale dynamics 
 

The equations of motion appropriate for many mesoscale applications are: 
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Usually, however, (1)-(3) are rewritten in a form where the pressure p and 

density  !  fields have been split into reference (also known as base-state) and 

perturbation (also known as deviation) values. 

 

A reference atmosphere is a hypothetical motionless atmosphere in which the 

density    !0(z)  is horizontally homogeneous (indep of x and y) and indep of time, 

and the pressure p0(z) satisfies the hydrostatic equation with density !0 : 

dp0/dz =!!0g . One can get !0(z)  from a sounding but that's not the only option. 

 

The actual density !  can be decomposed into two parts: the reference density !0  

and the part of the density that's not the reference density, the perturbation density !! : 
 

!(x,y,z,t) = !0(z) + !! (x,y,z,t) 
  density              ref density        perturbation density 
 

Rearrange it to get an expression (really the definition) for the perturbation density: 
 

    
!! (x,y,z,t) " !(x,y,z,t) # !0(z) .     (4) 

 

Similary, we define the perturbation pressure !p  as: 
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!p (x,y,z,t) " p(x,y,z,t) # p0(z) .     (5) 

 

In almost all meteorological applications, the magnitude of   !!  is very small, 

about 0.01-0.03 times  !  (a few percent of  ! ). So (4) indicates that !  is nearly the 

same as   !0 . So   !!  << !  and   !!  << !0 , and therefore: 
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Similarly, the magnitude of   !p  is very small, often 0.01 times p or even less. So (5) 

indicates that p is nearly the same as   p0 . So    !p << p and   !p  << p0 , and therefore:  
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 Despite their smallness,   !!  and   !p  can be very important dynamically. So don't 

throw them completely out! But you can take advantage of their smallness to rewrite 

(1)-(3). For the pressure gradient force (pgf) term in (1) consider the following: 
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So, the x-component pgf can be approximated as: 
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Similarly, the y-component pgf can be approximated as: 
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The right hand sides of (6) and (7) are sometimes called the x and y components of 

the perturbation pgf. 

 

For the vertical equation of motion (3) we combine the vertical pgf and gravity: 
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              pgf 
 

Reality checks on the minus sign in buoyancy: 

 Where air is colder than in the reference atmosphere, the density is larger than 
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the reference density (!> !0 ), and (4) shows that !!  is positive. In this case the 

buoyancy ! "!
!0
g  is negative and represents a downward force. Checks out! 

 Where air is warmer than in the reference atmosphere, the density is smaller 

than the reference density (   !< !0 ), and (4) shows that !!  is negative (there's no 

such thing as a negative density but !!  isn't a density, it's a difference between 

densities). So ! "!
!0
g  is positive and represents an upward force. Checks out! 

 

So, using (6)-(8) we can rewrite (1)-(3) as: 
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