LECTURE 32 The Planetary Boundary Layer (continued)

Flux form of the Boussinesq equations of motion

The Boussinesq equations of motion (lecture 30) are rewritten slightly as

$$\begin{split} &\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = -\frac{1}{\rho_c} \frac{\partial \left[p \right]}{\partial x} + f v + \nu \nabla^2 u \,, \\ &\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = -\frac{1}{\rho_c} \frac{\partial \left[p \right]}{\partial y} - f u + \nu \nabla^2 v \,, \\ &\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} = -\frac{1}{\rho_c} \frac{\partial \left[p \right]}{\partial z} + \frac{\left[\theta \right]}{\theta_c} g + \nu \nabla^2 w \,, \end{split}$$

where *p* is the perturbation pressure (formerly written as p') and θ is the perturbation potential temperature (formerly written as θ').

Prior to averaging, we put the advection terms in "flux form" (I'll explain the terminology). To do that, use the product rule d(AB) = AdB + BdA in the form,

$$A\,dB = d(A\,B) - B\,dA\,,$$

where d is shorthand for $\partial/\partial x$, $\partial/\partial y$, or $\partial/\partial z$. So, the advection terms in the x-comp equation of motion become:

$$\begin{split} u\frac{\partial u}{\partial x} &+ v\frac{\partial u}{\partial y} &+ w\frac{\partial u}{\partial z} &= \left(\frac{\partial uu}{\partial x} - u\frac{\partial u}{\partial x}\right) + \left(\frac{\partial uv}{\partial y} - u\frac{\partial v}{\partial y}\right) + \left(\frac{\partial uw}{\partial z} - u\frac{\partial w}{\partial z}\right) \\ A = u, B = u \quad A = v, B = u \quad A = w, B = u \\ &= \frac{\partial uu}{\partial x} + \frac{\partial uv}{\partial y} + \frac{\partial uw}{\partial z} - u\left[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}\right] \end{split}$$

Last term is 0 (from incompressibility condition), so we get,

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z} = \frac{\partial uu}{\partial x} + \frac{\partial uv}{\partial y} + \frac{\partial uw}{\partial z}.$$

Similarly, the advection terms in the *y* and *z* component equations of motion become:

$$\frac{u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} + w\frac{\partial v}{\partial z}}{u\frac{\partial w}{\partial x} + v\frac{\partial w}{\partial y} + w\frac{\partial w}{\partial z}} = \frac{\partial uw}{\partial x} + \frac{\partial vw}{\partial y} + \frac{\partial ww}{\partial z}$$

We thus get the Boussinesq equations of motion in **flux form** as:

$$\frac{\partial u}{\partial t} + \frac{\partial uu}{\partial x} + \frac{\partial uv}{\partial y} + \frac{\partial uw}{\partial z} = -\frac{1}{\rho_c} \frac{\partial p}{\partial x} + fv + \nu \nabla^2 u, \qquad (19)$$

$$\frac{\partial v}{\partial t} + \frac{\partial uv}{\partial x} + \frac{\partial vv}{\partial y} + \frac{\partial vw}{\partial z} = -\frac{1}{\rho_c} \frac{\partial |p|}{\partial y} - f u + \nu \nabla^2 v, \qquad (20)$$

$$\frac{\partial w}{\partial t} + \frac{\partial uw}{\partial x} + \frac{\partial vw}{\partial y} + \frac{\partial ww}{\partial z} = -\frac{1}{\rho_c} \frac{\partial p}{\partial z} + \frac{\partial}{\theta_c} g + \nu \nabla^2 w, \qquad (21)$$

Ensemble-average (Reynolds-average) of incompressibility condition

Take EA of the incompressibility condition, get:

$$\overline{\frac{\partial u}{\partial x}} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0 \qquad \text{use addition property 3}$$

$$\overline{\frac{\partial u}{\partial x}} + \overline{\frac{\partial v}{\partial y}} + \overline{\frac{\partial w}{\partial z}} = 0 \qquad \text{Use fact that EA operator } -\text{ commutes with spatial derivative operators (Property 7)}$$

$$\overline{\left|\frac{\partial \overline{u}}{\partial x} + \frac{\partial \overline{v}}{\partial y} + \frac{\partial \overline{w}}{\partial z} = 0\right| \qquad (22)$$

Ensemble-average (Reynolds-average) of the equations of motion

Take ensemble average of the flux-form of the x-component equation of motion:

$$\overline{\frac{\partial u}{\partial t} + \frac{\partial uu}{\partial x} + \frac{\partial uv}{\partial y} + \frac{\partial uw}{\partial z}} = \overline{-\frac{1}{\rho_c} \frac{\partial p}{\partial x} + fv + \nu \nabla^2 u} \quad \text{use addition property 3}$$
$$\overline{\frac{\partial u}{\partial t} + \frac{\partial uu}{\partial x} + \frac{\partial uv}{\partial y} + \frac{\partial uw}{\partial z}} = \overline{-\frac{1}{\rho_c} \frac{\partial p}{\partial x} + fv + \nu \nabla^2 u}$$

Use fact that EA operator $\overline{}$ commutes with spatial and time derivatives (Properties 6 and 7), and constants pass through EA operator (Property 1), get

$$\frac{\partial \overline{u}}{\partial t} + \frac{\partial \overline{uu}}{\partial x} + \frac{\partial \overline{uv}}{\partial y} + \frac{\partial \overline{uw}}{\partial z} = -\frac{1}{\rho_c} \frac{\partial \overline{p}}{\partial x} + f \, \overline{v} + \nu \, \nabla^2 \overline{u}$$

Apply Property 8 (for products), $\overline{\varphi \psi} = \overline{\varphi} \overline{\psi} + \overline{\varphi' \psi'}$, to the nonlinear terms:

 $\overline{uu} = \overline{u} \overline{u} + \overline{u'u'}$ $\overline{u'u'}$ is the turbulent variance of u $\overline{uv} = \overline{u} \overline{v} + \overline{u'v'}$ $\overline{u'v'}$ is the turbulent co-variance of u and v $\overline{uw} = \overline{u} \overline{w} + \overline{u'w'}$ $\overline{u'w'}$ is the turbulent co-variance of u and w

So we get:

$$\frac{\partial \bar{u}}{\partial t} + \frac{\partial}{\partial x} \left(\bar{u} \, \bar{u} + \overline{u'u'} \right) + \frac{\partial}{\partial y} \left(\bar{u} \, \bar{v} + \overline{u'v'} \right) + \frac{\partial}{\partial z} \left(\bar{u} \, \bar{w} + \overline{u'w'} \right) = -\frac{1}{\rho_c} \frac{\partial \bar{p}}{\partial x} + f \, \bar{v} + \nu \, \nabla^2 \bar{u} + \frac{\partial \bar{v}}{\partial x} \left(\bar{u} \, \bar{v} + \overline{u'v'} \right) + \frac{\partial \bar{v}}{\partial z} \left(\bar{u} \, \bar{w} + \overline{u'w'} \right) = -\frac{1}{\rho_c} \frac{\partial \bar{p}}{\partial x} + f \, \bar{v} + \nu \, \nabla^2 \bar{u} + \frac{\partial \bar{v}}{\partial x} \left(\bar{u} \, \bar{v} + \overline{u'v'} \right) + \frac{\partial \bar{v}}{\partial z} \left(\bar{u} \, \bar{w} + \overline{u'w'} \right) = -\frac{1}{\rho_c} \frac{\partial \bar{p}}{\partial x} + f \, \bar{v} + \nu \, \nabla^2 \bar{u} + \frac{\partial \bar{v}}{\partial y} \left(\bar{v} \, \bar{v} + \overline{u'v'} \right) + \frac{\partial \bar{v}}{\partial z} \left(\bar{v} \, \bar{v} + \overline{u'w'} \right) = -\frac{1}{\rho_c} \frac{\partial \bar{v}}{\partial x} + \frac{\partial \bar{v}}{\partial x} \left(\bar{v} \, \bar{v} + \overline{v'v'} \right) + \frac{\partial \bar{v}}{\partial z} \left(\bar{v} \, \bar{v} + \overline{v'v'} \right) = -\frac{1}{\rho_c} \frac{\partial \bar{v}}{\partial x} + \frac{\partial \bar{v}}{\partial x} \left(\bar{v} \, \bar{v} + \overline{v'v'} \right) + \frac{\partial \bar{v}}{\partial z} \left(\bar{v} \, \bar{v} + \overline{v'v'} \right) = -\frac{1}{\rho_c} \frac{\partial \bar{v}}{\partial x} + \frac{\partial \bar{v}}{\partial x} \left(\bar{v} \, \bar{v} + \overline{v'v'} \right) + \frac{\partial \bar{v}}{\partial z} \left(\bar{v} \, \bar{v} + \overline{v'v'} \right) = -\frac{1}{\rho_c} \frac{\partial \bar{v}}{\partial x} + \frac{\partial \bar{v}}{\partial x} \left(\bar{v} \, \bar{v} + \overline{v'v'} \right) + \frac{\partial \bar{v}}{\partial x} \left(\bar{v} \, \bar{v} + \overline{v'v'} \right) = -\frac{1}{\rho_c} \frac{\partial \bar{v}}{\partial x} + \frac{\partial \bar{v}}{\partial x} \left(\bar{v} \, \bar{v} + \overline{v'v'} \right) + \frac{\partial \bar{v}}{\partial x} \left(\bar{v} \, \bar{v} \, \bar{v} \right) = -\frac{1}{\rho_c} \frac{\partial \bar{v}}{\partial x} + \frac{\partial \bar{v}}{\partial x} \left(\bar{v} \, \bar{v} + \overline{v'v'} \right) + \frac{\partial \bar{v}}{\partial x} \left(\bar{v} \, \bar{v} \, \bar{v} \right) = -\frac{1}{\rho_c} \frac{\partial \bar{v}}{\partial x} \left(\bar{v} \, \bar{v} \, \bar{v} \right)$$

Take all turbulent variance and co-variance terms over to the right hand side.

$$\frac{\partial \bar{u}}{\partial t} + \frac{\partial \bar{u} \, \bar{u}}{\partial x} + \frac{\partial \bar{u} \, \bar{v}}{\partial y} + \frac{\partial \bar{u} \, \bar{w}}{\partial z} = -\frac{1}{\rho_c} \frac{\partial \bar{p}}{\partial x} + f \, \bar{v} - \frac{\partial \overline{u'u'}}{\partial x} - \frac{\partial \overline{u'v'}}{\partial y} - \frac{\partial \overline{u'w'}}{\partial z} + \nu \, \nabla^2 \bar{u}$$

Expand out the advection terms to get them out of flux form:

$$\frac{\partial \overline{u}\,\overline{u}}{\partial x} + \frac{\partial \overline{u}\,\overline{v}}{\partial y} + \frac{\partial \overline{u}\,\overline{w}}{\partial z} = \overline{u}\,\frac{\partial \overline{u}}{\partial x} + \overline{u}\,\frac{\partial \overline{u}}{\partial x} + \overline{u}\,\frac{\partial \overline{v}}{\partial y} + \overline{v}\,\frac{\partial \overline{u}}{\partial y} + \overline{u}\,\frac{\partial \overline{u}}{\partial z} + \overline{w}\,\frac{\partial \overline{u}}{\partial z}$$

$$= \overline{u}\,\frac{\partial \overline{u}}{\partial x} + \overline{v}\,\frac{\partial \overline{u}}{\partial y} + \overline{w}\,\frac{\partial \overline{u}}{\partial z} + \overline{u}\left(\frac{\partial \overline{u}}{\partial x} + \frac{\partial \overline{v}}{\partial y} + \frac{\partial \overline{w}}{\partial z}\right)^{\rightarrow 0} \quad \text{from (22)}$$

$$= \overline{u}\,\frac{\partial \overline{u}}{\partial x} + \overline{v}\,\frac{\partial \overline{u}}{\partial y} + \overline{w}\,\frac{\partial \overline{u}}{\partial z} \quad \text{now they look like usual advection terms}$$

So, the ensemble-averaged x-comp equation of motion becomes

$$\frac{\partial \bar{u}}{\partial t} + \bar{u}\frac{\partial \bar{u}}{\partial x} + \bar{v}\frac{\partial \bar{u}}{\partial y} + \bar{w}\frac{\partial \bar{u}}{\partial z} = -\frac{1}{\rho_c}\frac{\partial \bar{p}}{\partial x} + f\bar{v} - \frac{\partial \overline{u'u'}}{\partial x} - \frac{\partial \overline{u'v'}}{\partial y} - \frac{\partial \overline{u'w'}}{\partial z} + \nu\nabla^2\bar{u}$$
(23)

Similarly, we obtain the ensemble-averaged y and z-comp equations of motion as

$$\frac{\partial \overline{v}}{\partial t} + \overline{u} \frac{\partial \overline{v}}{\partial x} + \overline{v} \frac{\partial \overline{v}}{\partial y} + \overline{w} \frac{\partial \overline{v}}{\partial z} = -\frac{1}{\rho_c} \frac{\partial \overline{p}}{\partial y} - f \overline{u} - \frac{\partial \overline{u'v'}}{\partial x} - \frac{\partial \overline{v'v'}}{\partial y} - \frac{\partial \overline{v'w'}}{\partial z} + \nu \nabla^2 \overline{v}$$
(24)

$$\frac{\partial \bar{w}}{\partial t} + \bar{u}\frac{\partial \bar{w}}{\partial x} + \bar{v}\frac{\partial \bar{w}}{\partial y} + \bar{w}\frac{\partial \bar{w}}{\partial z} = -\frac{1}{\rho_c}\frac{\partial \bar{p}}{\partial z} + \frac{\bar{\theta}}{\theta_c}g - \frac{\partial \bar{u'w'}}{\partial x} - \frac{\partial \bar{v'w'}}{\partial y} - \frac{\partial \bar{w'w'}}{\partial z} + \nu\nabla^2 \bar{w}$$
(25)

These are prognostic equations for the mean velocity components \bar{u} , \bar{v} , and \bar{w} . Each of them "looks" like the equation of motion that gave rise to it, except for the presence of new forcing terms: the turbulent variances/co-variances.