LECTURE 32
 The Planetary Boundary Layer (continued)

Flux form of the Boussinesq equations of motion

The Boussinesq equations of motion (lecture 30) are rewritten slightly as

$$
\begin{aligned}
& \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}=-\frac{1}{\rho_{c}} \frac{\partial \mid p}{\partial x}+f v+\nu \nabla^{2} u \\
& \frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}=-\frac{1}{\rho_{c}} \frac{\partial \underline{p}}{\partial y}-f u+\nu \nabla^{2} v \\
& \frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}=-\frac{1}{\rho_{c}} \frac{\partial \underline{p}}{\partial z}+\frac{\theta]}{\theta_{c}} g+\nu \nabla^{2} w
\end{aligned}
$$

where \boldsymbol{p} is the perturbation pressure (formerly written as p^{\prime}) and $\boldsymbol{\theta}$ is the perturbation potential temperature (formerly written as θ^{\prime}).

Prior to averaging, we put the advection terms in "flux form" (I'll explain the terminology). To do that, use the product rule $d(A B)=A d B+B d A$ in the form,

$$
A d B=d(A B)-B d A
$$

where d is shorthand for $\partial / \partial x, \partial / \partial y$, or $\partial / \partial z$. So, the advection terms in the x comp equation of motion become:

$$
\begin{aligned}
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z} & =\left(\frac{\partial u u}{\partial x}-u \frac{\partial u}{\partial x}\right)+\left(\frac{\partial u v}{\partial y}-u \frac{\partial v}{\partial y}\right)+\left(\frac{\partial u w}{\partial z}-u \frac{\partial w}{\partial z}\right) \\
A=u, B=u \quad A=v, B=u \quad A=w, B=u & \\
& =\frac{\partial u u}{\partial x}+\frac{\partial u v}{\partial y}+\frac{\partial u w}{\partial z}-u\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)
\end{aligned}
$$

Last term is 0 (from incompressibility condition), so we get,

$$
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}=\frac{\partial u u}{\partial x}+\frac{\partial u v}{\partial y}+\frac{\partial u w}{\partial z} .
$$

Similarly, the advection terms in the y and z component equations of motion become:

$$
\begin{aligned}
& u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}=\frac{\partial u v}{\partial x}+\frac{\partial v v}{\partial y}+\frac{\partial v w}{\partial z} \\
& u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}=\frac{\partial u w}{\partial x}+\frac{\partial v w}{\partial y}+\frac{\partial w w}{\partial z}
\end{aligned}
$$

We thus get the Boussinesq equations of motion in flux form as:

$$
\begin{align*}
& \frac{\partial u}{\partial t}+\frac{\partial u u}{\partial x}+\frac{\partial u v}{\partial y}+\frac{\partial u w}{\partial z}=-\frac{1}{\rho_{c}} \frac{\partial p}{\partial x}+f v+\nu \nabla^{2} u, \tag{19}\\
& \frac{\partial v}{\partial t}+\frac{\partial u v}{\partial x}+\frac{\partial v v}{\partial y}+\frac{\partial v w}{\partial z}=-\frac{1}{\rho_{c}} \frac{\partial \underline{p}}{\partial y}-f u+\nu \nabla^{2} v, \tag{20}\\
& \frac{\partial w}{\partial t}+\frac{\partial u w}{\partial x}+\frac{\partial v w}{\partial y}+\frac{\partial w w}{\partial z}=-\frac{1}{\rho_{c}} \frac{\partial p}{\partial z}+\frac{\theta}{\theta_{c}} g+\nu \nabla^{2} w, \tag{21}
\end{align*}
$$

Ensemble-average (Reynolds-average) of incompressibility condition

Take EA of the incompressibility condition, get:

$$
\begin{array}{ll}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0 & \text { use addition property } 3 \\
\overline{\frac{\partial u}{\partial x}}+\frac{\overline{\partial v}}{\partial y}+\frac{\overline{\partial w}}{\partial z}=0 & \begin{array}{l}
\text { Use fact that EA operator }- \text { commutes with } \\
\text { spatial derivative operators (Property 7) }
\end{array} \\
\frac{\partial \bar{u}}{\partial x}+\frac{\partial \bar{v}}{\partial y}+\frac{\partial \bar{w}}{\partial z}=0 & \\
\hline
\end{array}
$$

Ensemble-average (Reynolds-average) of the equations of motion

Take ensemble average of the flux-form of the x -component equation of motion:

$$
\begin{aligned}
& \overline{\frac{\partial u}{\partial t}+\frac{\partial u u}{\partial x}+\frac{\partial u v}{\partial y}+\frac{\partial u w}{\partial z}}=\overline{-\frac{1}{\rho_{c}} \frac{\partial p}{\partial x}+f v+\nu \nabla^{2} u} \quad \text { use addition property } 3 \\
& \overline{\overline{\partial u}}+\overline{\frac{\partial u u}{\partial t}}+\frac{\overline{\partial u v}}{\partial y}+\frac{\overline{\partial u w}}{\partial z}=\overline{-\frac{1}{\rho_{c}} \frac{\partial p}{\partial x}+\overline{f v}+\overline{\nu \nabla^{2} u}}
\end{aligned}
$$

Use fact that EA operator ${ }^{-}$commutes with spatial and time derivatives (Properties 6 and 7), and constants pass through EA operator (Property 1), get

$$
\frac{\partial \bar{u}}{\partial t}+\frac{\partial \overline{u u}}{\partial x}+\frac{\partial \overline{u v}}{\partial y}+\frac{\partial \overline{u w}}{\partial z}=-\frac{1}{\rho_{c}} \frac{\partial \bar{p}}{\partial x}+f \bar{v}+\nu \nabla^{2} \bar{u}
$$

Apply Property 8 (for products), $\overline{\varphi \psi}=\bar{\varphi} \bar{\psi}+\overline{\varphi^{\prime} \psi^{\prime}}$, to the nonlinear terms:

$$
\begin{array}{ll}
\overline{u u}=\bar{u} \bar{u}+\overline{u^{\prime} u^{\prime}} & \overline{u^{\prime} u^{\prime}} \text { is the turbulent variance of } \boldsymbol{u} \\
\overline{u v}=\bar{u} \bar{v}+\overline{u^{\prime} v^{\prime}} & \overline{u^{\prime} v^{\prime}} \text { is the turbulent co-variance of } \boldsymbol{u} \text { and } \boldsymbol{v} \\
\overline{u w}=\bar{u} \bar{w}+\overline{u^{\prime} w^{\prime}} & \overline{u^{\prime} w^{\prime}} \text { is the turbulent co-variance of } \boldsymbol{u} \text { and } \boldsymbol{w}
\end{array}
$$

So we get:

$$
\frac{\partial \bar{u}}{\partial t}+\frac{\partial}{\partial x}\left(\bar{u} \bar{u}+\overline{u^{\prime} u^{\prime}}\right)+\frac{\partial}{\partial y}\left(\bar{u} \bar{v}+\overline{u^{\prime} v^{\prime}}\right)+\frac{\partial}{\partial z}\left(\bar{u} \bar{w}+\overline{u^{\prime} w^{\prime}}\right)=-\frac{1}{\rho_{c}} \frac{\partial \bar{p}}{\partial x}+f \bar{v}+\nu \nabla^{2} \bar{u}
$$

Take all turbulent variance and co-variance terms over to the right hand side.

$$
\frac{\partial \bar{u}}{\partial t}+\frac{\partial \bar{u} \bar{u}}{\partial x}+\frac{\partial \bar{u} \bar{v}}{\partial y}+\frac{\partial \bar{u} \bar{w}}{\partial z}=-\frac{1}{\rho_{c}} \frac{\partial \bar{p}}{\partial x}+f \bar{v}-\frac{\partial \overline{u^{\prime} u^{\prime}}}{\partial x}-\frac{\partial \overline{u^{\prime} v^{\prime}}}{\partial y}-\frac{\partial \overline{u^{\prime} w^{\prime}}}{\partial z}+\nu \nabla^{2} \bar{u}
$$

Expand out the advection terms to get them out of flux form:

$$
\begin{aligned}
\frac{\partial \bar{u} \bar{u}}{\partial x}+\frac{\partial \bar{u} \bar{v}}{\partial y}+\frac{\partial \bar{u} \bar{w}}{\partial z} & =\bar{u} \frac{\partial \bar{u}}{\partial x}+\bar{u} \frac{\partial \bar{u}}{\partial x}+\bar{u} \frac{\partial \bar{v}}{\partial y}+\bar{v} \frac{\partial \bar{u}}{\partial y}+\bar{u} \frac{\partial \bar{w}}{\partial z}+\bar{w} \frac{\partial \bar{u}}{\partial z} \\
& =\bar{u} \frac{\partial \bar{u}}{\partial x}+\bar{v} \frac{\partial \bar{u}}{\partial y}+\bar{w} \frac{\partial \bar{u}}{\partial z}+\bar{u}\left(\frac{\partial \bar{u}}{\partial x}+\frac{\partial \bar{v}}{\partial y}+\frac{\partial \bar{w}}{\partial z}\right) \rightarrow 0 \text { from (22) } \\
& =\bar{u} \frac{\partial \bar{u}}{\partial x}+\bar{v} \frac{\partial \bar{u}}{\partial y}+\bar{w} \frac{\partial \bar{u}}{\partial z} \text { now they look like usual advection terms }
\end{aligned}
$$

So, the ensemble-averaged x-comp equation of motion becomes

$$
\begin{equation*}
\frac{\partial \bar{u}}{\partial t}+\bar{u} \frac{\partial \bar{u}}{\partial x}+\bar{v} \frac{\partial \bar{u}}{\partial y}+\bar{w} \frac{\partial \bar{u}}{\partial z}=-\frac{1}{\rho_{c}} \frac{\partial \bar{p}}{\partial x}+f \bar{v}-\frac{\partial \overline{u^{\prime} u^{\prime}}}{\partial x}-\frac{\partial \overline{u^{\prime} v^{\prime}}}{\partial y}-\frac{\partial \overline{u^{\prime} w^{\prime}}}{\partial z}+\nu \nabla^{2} \bar{u} \tag{23}
\end{equation*}
$$

Similarly, we obtain the ensemble-averaged \mathbf{y} and $\mathbf{z - c o m p}$ equations of motion as

$$
\begin{equation*}
\frac{\partial \bar{v}}{\partial t}+\bar{u} \frac{\partial \bar{v}}{\partial x}+\bar{v} \frac{\partial \bar{v}}{\partial y}+\bar{w} \frac{\partial \bar{v}}{\partial z}=-\frac{1}{\rho_{c}} \frac{\partial \bar{p}}{\partial y}-f \bar{u}-\frac{\partial \overline{u^{\prime} v^{\prime}}}{\partial x}-\frac{\partial \overline{v^{\prime} v^{\prime}}}{\partial y}-\frac{\partial \overline{\bar{v}^{\prime} w^{\prime}}}{\partial z}+\nu \nabla^{2} \bar{v} \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial \bar{w}}{\partial t}+\bar{u} \frac{\partial \bar{w}}{\partial x}+\bar{v} \frac{\partial \bar{w}}{\partial y}+\bar{w} \frac{\partial \bar{w}}{\partial z}=-\frac{1}{\rho_{c}} \frac{\partial \bar{p}}{\partial z}+\frac{\bar{\theta}}{\theta_{c}} g-\frac{\partial \overline{u^{\prime} w^{\prime}}}{\partial x}-\frac{\partial \overline{v^{\prime} w^{\prime}}}{\partial y}-\frac{\partial \overline{w^{\prime} w^{\prime}}}{\partial z}+\nu \nabla^{2} \bar{w} \tag{25}
\end{equation*}
$$

These are prognostic equations for the mean velocity components \bar{u}, \bar{v}, and \bar{w}. Each of them "looks" like the equation of motion that gave rise to it, except for the presence of new forcing terms: the turbulent variances/co-variances.

