
LECTURE 34 
The Planetary Boundary Layer (continued) 

 

Ekman layer (continued) 
 

We close the system using an eddy viscosity parameterization (also due to 

Boussinesq) in which the Reynolds stresses   !u !w  and !v !w  are set proportional to 

vertical gradients of the corresponding mean velocity components: 
 

!u !w ="K dudz ,         (33) 
 

!v !w ="K dvdz .         (34) 
 

Here K  is the eddy viscosity coefficient (or just eddy viscosity). Relating Reynolds 

stresses to velocity gradients through an eddy viscosity coefficient is analogous to 

relating viscous shear stresses to velocity gradients through a kinematic viscosity 

coefficient (covered in Dynamics I). 

 

Does this parameterization make sense? Consider an eddy in a shear flow: 
 

 
 
In rising branch (point B, where !w >0 ) statistically slower air is transported upward 
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(since    du/dz > 0 , air beneath B has a smaller value of u than air at B). So u value 

transported past B is less than mean u at B, so !u < 0 . The stronger the shear, the 

larger this deficit is, and the larger the magnitude of !u  is. So !u !w < 0 , with a 

magnitude that increases with increasing   du/dz . This suggests   !u !w  is proportional 

to    !du/dz  (minus sign since   du/dz  is positive while   !u !w  is negative). 

 

Similar reasoning in descending branch (point A, !w < 0 ), where faster air is 

transported downward (   !u >0 ) still yields    !u !w < 0 , with a magnitude that increases 

with increasing   du/dz . Again, this suggests   !u !w  is proportional to    !du/dz . 

 

Get same result in clockwise-spinning eddies (it's counter-clockwise in diagram). 

 

So, for an ensemble average, we expect 
  
!u !w ="K du

dz , where K  is a proportionality 

factor that we call the eddy viscosity. 

 

Eddy viscosity parameterization (closure) is commonly used in mesoscale and 

climate models – with  K  specified in different ways, e.g., related to wind shear and 

static stability, or to a predicted turbulent kinetic energy and a length scale. Here, we 

will simply take K  to be constant (as did Ekman). 

 

Applying (33) and (34) in (31) and (32) yields 
 

    
0 = f v !vg( )+ K +!( )d

2u
dz2 ,         

 

0=!f u!ug( )+ K +!( )d
2v
dz2

,         
 

Daytime  K  ranges from 10 to 200   m
2 s!1 , while !  is ~1.5!10"5m2 s"1  (~ million 
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to ~10 million times smaller than  K ). So we can safely neglect !  and just work with 
 

0= f v !vg( )+K d
2u
dz2

,             (35) 
 

0=!f u!ug( )+K d
2v
dz2

.             (36) 
 

Decompose u  into a geostrophic component ug  and a part that's not geostrophic 

(ageostrophic wind component ua ): 
  
u = ug +ua . Same for  v : v = vg +va . In other 

words, we define ageostrophic wind components by: 

 ua ! u"ug ,          (37) 

 
  
va ! v "vg .          (38) 

Since the geostrophic wind in this problem is independent of z (we showed the 

horizontal perturbation pgf is independent of z), we can rewrite (35) and (36) 

completely in terms of ageostrophic wind components: 
 

   
0 = f va +K d2ua

dz2 ,             (39) 
 

   
0 =!f ua +K d2va

dz2 .              (40) 

 

There are (at least) two different ways to solve the coupled ODEs (39) and (40):  

 

(i) Standard way. "Uncouple" the equations by eliminating one variable in favor of 

another. For example, write  va  in terms of  ua . From (39):    va =!(K/f )d2ua/dz2 . 

Plugging this into (40) yields a 4th order ODE for just one variable: 
 

   
   

d4ua
dz4 + f 2

K2 ua = 0 .  
 

Eliminating  ua  in favor of  va  would lead to an analogous 4th order ODE for  va .  
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(ii) Linear combination "trick". Combine the 2 ODEs into 1 ODE in a single new 

dependent variable, a linear combination of the original variables. If this trick works 

(it often doesn't), it really simplifies things. We'll solve (39) and (40) this trick way. 

 

Multiply (40) by i and add the resulting equation to (39): 
 

0= f va !iua( )+K d2
dz2

ua + iva( ),           (41) 

 
Define a new dependent variable "M", 
 

  M !ua + iva .         (42) 
 

This simplifies last term in (41), but what about the first term? Write ua  or va  in 

terms of M (doesn't matter which one; get same result in the end). Okay, I'll use ua : 

ua =M !iva . Plug that into first term: 
 

f va !iua( )= f va !i M !iva( )"
#$

%
&' = f va !iM + i

2va"
#$

%
&'
           use i2 =!1   

 
       = f va !iM !va"

#$
%
&' =!i f M     

 
So first term also simplifies! So (41) reduces to: 
 

0=!i f M+K d
2M
dz2

.        (43) 

 
It's a 2nd order linear constant coefficient homogeneous ODE. Seek solutions in the 

form of exponentials. Plug the trial solution M ! eqz  into (43), get: 
 

   
0 =!i f eqz +K d2eqz

dz2  

 
0=!i f eqz +Kq2eqz         ÷ by eqz  
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   0 =!i f +Kq2  
 

q2 = i fK          Take square root 

 

  
q = ± i f

K           We really get two possible roots (plus and minus) 

 

Use fact that 
   
i = 1

2
+ i 1

2
 (you'll prove it in the problem set). 

 

   
q = ± 1

2
+ i 1

2
!

"
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Simplifies a bit: 
 

q =± 1+ i( ) f
2K  

 

So we get two q as: 
 

q1 = 1+ i( ) f
2K , q2 = ! 1+ i( ) f

2K .     (44) 

 

Note: We'll restrict attention to the Northern hemisphere. So f  > 0. And K is some 

positive constant. So f
2K  is real.  


