LECTURE 35
 The Planetary Boundary Layer (continued)

Ekman layer (continued)

Recap: we're solving the x - and y-component Reynolds-averaged equations of motion using an eddy viscosity closure for the Reynolds stresses. We combined two coupled ODEs for $\bar{u}_{a} \equiv \bar{u}-u_{g}$, and $\bar{v}_{a} \equiv \bar{v}-v_{g}$ into a single ODE for $M \equiv \bar{u}_{a}+i \bar{v}_{a}$,

$$
\begin{equation*}
0=-i f M+K \frac{d^{2} M}{d z^{2}} \tag{43}
\end{equation*}
$$

This equation has solutions of the form $M \sim e^{q z}$ for two q :

$$
\begin{equation*}
q_{1}=(1+i) \sqrt{\frac{f}{2 K}}, \quad q_{2}=-(1+i) \sqrt{\frac{f}{2 K}} . \tag{44}
\end{equation*}
$$

In terms of the parameter

$$
\gamma \equiv \sqrt{\frac{f}{2 K}}, \quad \text { which is real (in } \mathrm{N} . \text { hemisphere) and positive, }
$$

these q 's become: $q_{1}=\gamma(1+i), q_{2}=-\gamma(1+i)$. The general solution of (43) is a linear combination of the solutions associated with these q :

$$
\begin{equation*}
M(z)=C \exp [\gamma(1+i) z]+D \exp [-\gamma(1+i) z] \tag{45}
\end{equation*}
$$

where C and D are constants. Rewrite the first exponential:

$$
\begin{aligned}
\exp [\gamma(1+i) z] & =\exp (\gamma z+i \gamma z)=e^{\gamma z} e^{i \gamma z} \quad \text { use Euler's formula } \\
& =e^{\gamma z}(\cos \gamma z+i \sin \gamma z)
\end{aligned}
$$

Similarly, for the second exponential, we have

$$
\begin{aligned}
\exp [-\gamma(1+i) z]= & \exp (-\gamma z-i \gamma z)=e^{-\gamma z} e^{-i \gamma z} \\
= & e^{-\gamma z}(\cos \gamma z-i \sin \gamma z)
\end{aligned}
$$

Put 'em back into (45), get:

$$
\begin{equation*}
M(z)=C e^{\gamma z}(\cos \gamma z+i \sin \gamma z)+D e^{-\gamma z}(\cos \gamma z-i \sin \gamma z) \tag{46}
\end{equation*}
$$

Now consider boundary conditions. Far above the surface $(z \rightarrow \infty)$, the wind becomes geostrophic: $\bar{u} \rightarrow u_{g}$ and $\bar{v} \rightarrow v_{g}$. So $\bar{u}_{a}=\bar{u}-u_{g} \rightarrow u_{g}-u_{g}=0$ and $\bar{v}_{a} \equiv \bar{v}-v_{g} \rightarrow v_{g}-v_{g}=0$. So we impose:

$$
\lim _{z \rightarrow \infty} M=\lim _{z \rightarrow \infty}\left(\bar{u}_{a}+i \bar{v}_{a}\right)=0, \quad[\text { upper boundary condition for } M]
$$

Looking at (46) as $z \rightarrow \infty$ we see that the term multiplying D goes to 0 since $e^{-\gamma z} \rightarrow 0$ (γ being positive), but the term multiplying C blows up since $e^{\gamma z} \rightarrow \infty$, (γ being positive). To ensure $M \rightarrow 0$, we must set $\boldsymbol{C}=\mathbf{0}$. Then (46) becomes

$$
\begin{equation*}
M(z)=D e^{-\gamma z}(\cos \gamma z-i \sin \gamma z) \tag{47}
\end{equation*}
$$

Now consider the surface conditions: no-slip on u and $v ; u(0)=0$ and $v(0)=0$. So $\bar{u}_{a}(0)=\bar{u}(0)-u_{g}=0-u_{g}=-u_{g}$ and $\bar{v}_{a}(0)=\bar{v}(0)-v_{g}=0-v_{g}=-v_{g}$. So:

$$
M(0)=\bar{u}_{a}(0)+i \bar{v}_{a}(0)=-\left(\bar{u}_{g}+i \bar{v}_{g}\right) . \quad[\text { lower boundary condition for } M]
$$

So, set $z=0$ in (47) and use the lower boundary condition for M :

$$
\begin{aligned}
& M(0)=D e^{-0}[\cos (0)-i \sin (\gamma 0)] \quad \text { plug in lower b.c. for } \mathrm{M} \\
& -\left(\bar{u}_{g}+i \bar{v}_{g}\right)=D[1-0]=D \quad \therefore D=-\left(\bar{u}_{g}+i \bar{v}_{g}\right)
\end{aligned}
$$

So now (47) becomes

$$
M(z)=-\left(\bar{u}_{g}+i \bar{v}_{g}\right) e^{-\gamma z}(\cos \gamma z-i \sin \gamma z) .
$$

Plug in $M \equiv \bar{u}_{a}+i \bar{v}_{a}$.

$$
\begin{equation*}
\bar{u}_{a}+i \bar{v}_{a}=-\left(\bar{u}_{g}+i \bar{v}_{g}\right) e^{-\gamma z}(\cos \gamma z-i \sin \gamma z) \tag{48}
\end{equation*}
$$

To find out what \bar{u}_{a} and \bar{v}_{a} are, we need to take real and imaginary parts of (48). So, rewrite the right hand side of (48) to make clear what its real and imaginary parts are:

$$
\begin{aligned}
\bar{u}_{a}+i \bar{v}_{a} & =-e^{-\gamma z}\left[\left(\bar{u}_{g}+i \bar{v}_{g}\right)(\cos \gamma z-i \sin \gamma z)\right] \quad \text { expand out right hand side } \\
& =-e^{-\gamma z}\left[\bar{u}_{g} \cos \gamma z-i \bar{u}_{g} \sin \gamma z+i \bar{v}_{g} \cos \gamma z-i\left(i \bar{v}_{g}\right) \sin \gamma z\right]
\end{aligned}
$$

In the last term use fact that $-i i=-i^{2}=-(-1)=1$. So we get

$$
\begin{equation*}
\bar{u}_{a}+i \bar{v}_{a}=-e^{-\gamma z}\left(\bar{u}_{g} \cos \gamma z+\bar{v}_{g} \sin \gamma z-i \bar{u}_{g} \sin \gamma z+i \bar{v}_{g} \cos \gamma z\right) \tag{49}
\end{equation*}
$$

Now take real and imaginary parts of this equation. The real part gives:

$$
\bar{u}_{a}=-e^{-\gamma z}\left(\bar{u}_{g} \cos \gamma z+\bar{v}_{g} \sin \gamma z\right)
$$

The imaginary part gives:

$$
\bar{v}_{a}=-e^{-\gamma z}\left(-\bar{u}_{g} \sin \gamma z+\bar{v}_{g} \cos \gamma z\right)
$$

Lastly, rewrite these in terms of the mean winds $\bar{u}=u_{g}+\bar{u}_{a}$, and $\bar{v}=v_{g}+\bar{v}_{a}$:

$$
\begin{align*}
& \bar{u}=\bar{u}_{g}\left(1-e^{-\gamma z} \cos \gamma z\right)-\bar{v}_{g} e^{-\gamma z} \sin \gamma z, \tag{50}\\
& \bar{v}=\bar{v}_{g}\left(1-e^{-\gamma z} \cos \gamma z\right)+\bar{u}_{g} e^{-\gamma z} \sin \gamma z, \tag{51}
\end{align*}
$$

where $\gamma \equiv \sqrt{\frac{f}{2 K}}$.
[Reality check: Verify using (50) and (51) that flow becomes geostrophic far above surface and goes to zero at surface. Yep, it checks out.]

Consider a new (rotated) coordinate system in which new \boldsymbol{x} axis is aligned with geostrophic wind (all of geostrophic wind vector is in new x-direction, so $v_{g}=0$). So \boldsymbol{y} axis points toward low pressure!). In this new system, (50) and (51) become: $\bar{u}=\bar{u}_{g}\left(1-e^{-\gamma z} \cos \gamma z\right), \bar{v}=\bar{u}_{g} e^{-\gamma z} \sin \gamma z$. These are graphed below:

Within boundary layer there's a cross-isobar flow toward low pressure $(v>0)$.

Various ways to define height of boundary layer. One way is to say it's the height H where $\gamma H=\pi$ (so $e^{-\gamma H}=e^{-\pi} \approx 0.05$). At this height u has nearly reached its geostrophic value and v has nearly returned to 0 (see diagram above).

$$
H=\frac{\pi}{\gamma}=\frac{\pi}{\sqrt{\frac{f}{2 K}}}=\pi \sqrt{\frac{2 K}{f}} .
$$

For typical values $K=10 \mathrm{~m}^{2} \mathrm{~s}^{-1}, f=8 \times 10^{-5} \mathrm{~s}^{-1}$, we obtain H as: $\mathrm{H} \sim 1.5 \mathrm{~km}$.

Ekman spiral

(hodograph of v versus u for γz ranging from ground through top of boundary layer):

Theoretical Ekman spiral (top dashed curve) versus a real Ekman spiral (solid curve):

