
LECTURE 38 
Waves in the Atmosphere 

 
Wave parameters (for any kind of wave) 

 

 We'll work with waves of the form: 
 

some flow property ~ 
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where  

  A is amplitude 

  
    

2!
"

x!ct( ) is phase of the wave. 

   !  is wavelength, 

  c is phase speed. 
 

Why consider waves of this form? 

 

- Many waves "look" like sines or cosines. 

 

- Many waves are governed by linear constant coefficient ODEs and PDEs. These 

have sine and cosine solutions. Can superimpose these solutions via Fourier analysis 

to get solutions involving arbitrary initial conditions or arbitrary boundary forcings. 

 

 A closer look at the wave parameters: 
 

 phase:  
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Wave repeats itself when phase changes by 2! . So, at a fixed moment in time, 
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phase changes by   2!  when x changes by  ! . Hence the name wavelength for  ! . 

 

    
k ! 2!
"

  is wavenumber. It's the number of oscillations in a (dimensional) length of 

  2! . For example, if ! =1  (meters) then over a distance of   2!  meters we see about 6 

oscillations: 
    
k ! 2!

1m " 6.28 m#1 .   
 

Think: long waves    -->   small k 

  short waves   -->   big k 
 

Look at phase again, and but now consider a fixed x. Phase changes by   2!  when time 

changes by 
  
!
c . So, wave period is: 

   
T ! !c . 

    
! ! 1

T   is frequency. Number of oscillations per unit time. 

 

    
!! 2"

T = 2"#   is circular (or radian) frequency. It's the number of oscillations in a 

(dimensional)   2!  length of time. For example, if T = 1 (second) then over a duration 

of   2!  seconds, there are about 6 oscillations: ! = 2!1s ! 6.28 s"1  

 

Since 
   
T ! !c    

    
! != 2"

T = 2" c
#
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! c = !k  

 
So we're led to the equivalent expressions: 
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Acoustic (sound) waves 
 

Sound is a pressure wave. It propagates via alternating adiabatic expansions 

(rarefactions) and compressions. The compression zone is a high p zone. The 

rarefaction zone is a low p zone. Sound waves are created through mechanical 

vibrations (e.g., vibrating engines, shedding of vortices from branches, turbulent 

motion, crying brats) and then propagate away from source. Air velocities in sound 

waves are parallel (and anti-parallel) to direction of propagation, so these are 

longitudinal waves, not transverse (shear) waves. 

 

As in most waves, speed of propagation and speed of parcels are two 

different things! A sound wave might propagate in 1 direction at 350 m/s, while the 

velocity of the air parcels is "back and forth" at a few mm/s. [Similarly, in a human 

wave at a football game, pattern moves laterally at > 10 m/s but people don't move 

laterally at all; and the vertical speed of arms is much less than 10 m/s]. 
 

 
 

Sound waves are often created with spherical symmetry (point source), but as the 

further they propagate away from the source, the more the phase fronts look planar so 

we can study them as 1D structures. 
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Eqns of motion, energy and mass conservation for 1D sound waves 
 

Consider simplest case that supports sound waves: 1D flow. For example, let u 

and all thermodynamic variables vary only with x and t, while v = w = 0 everywhere, 

for all t. Viscous and Coriolis terms aren't important to this phenomenon, so neglect 

them. In this derivation, whenever it's convenient to write a thermodynamic variable 

as a natural log (e.g.,   ln! ), do it! 

 

x-component eqn of motion: 
 

 Du
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1
!
!p
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Mass conservation eqn. Use an exact one (NOT incompressibility condition): 
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Dt  and 1D assumption, this becomes: 
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Thermodynamic energy eqn for adiabatic motion:     D!/Dt = 0 , which also means: 
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We have 5 variables u, p, T, ! ,  !  in 4 unknowns. Need 1 more equation to close 

the system. Bring in the ideal gas law, 
 

    p = !RT .          (5) 
 
Now the system is closed. 

Lets eliminate ln!  from the equation set. First take ln of (4), get 
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ln!= lnT! R

cp
lnp + R

cp
ln 1000mb( ) .      (6) 

 
Applying this in (3) yields 
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So now   ln!  is gone. Now lets get rid of lnT. Take ln of ideal gas law (5) and 

rearrange it to get an expression for lnT: 
 

     lnT = lnp! ln!! lnR .        (8) 
 
Plugging this into (7) removes lnT from the problem: 
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where 
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1! R

cp
  

Since 
  
R =cp!cv :    

 
   
1! R

cp
=1!

(cp !cv)
cp

=1!1+
cv
cp

=
cv
cp

 

Define 
   
! !

cp
cv

.          
    
! 1" R

cp
= 1
!

 

_______________  
 



 6 

Now lets go after   ln! . Get    D(ln!)/Dt  from (9) and plug it into (2), get: 
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The last step doesn't completely remove  !  itself from problem because it's still in (1): 
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But if we treat  !  as constant in (1) then (10) and (1) count as 2 equations in 2 

unknowns (u and p). This will be our approach. 

 

 


