LECTURE 40
 Rossby waves (Planetary waves)

Based on our analysis of an air column (with $\zeta=0$ initially) passing over a mountain ridge (Lecture 23), we suspect latitudinal variations in \boldsymbol{f} can support wave motions. When the column reached the plains, it was south of its starting latitude, and moving north with $\zeta>0$. Assuming column thickness H didn't change over the plains, the barotropic potential vorticity theorem $\frac{D_{h}}{D t}\left(\frac{\zeta+f}{H}\right)=0$ reduced to $\frac{D_{h}}{D t}(\zeta+f)=0$, so the column's absolute vertical vorticity was conserved. Increases in f were associated with decreases in ζ (and vice versa). So this happened:

Now see if we can get propagating wave solutions due to latitudinal changes in f. Consider the vertical vorticity equation for mid-latitude synoptic-scale flows,

$$
\begin{equation*}
\frac{\partial \zeta}{\partial t}+u \frac{\partial \zeta}{\partial x}+v \frac{\partial \zeta}{\partial y}=-\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)(\zeta+f)-\beta v \tag{1}
\end{equation*}
$$

with $\beta \equiv d f / d y=2 \Omega \cos \phi / a>0$. We'll treat β as const. Recall that $-\beta v$ accounts for advection of earth vorticity (f).

Consider the simple case where the flow is 2D $[u=u(x, y, t), v=v(x, y, t), w(x$, $y, t)=0]$ and incompressible. In 2D,$\nabla \cdot \vec{u}=0$ becomes

$$
\begin{equation*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \tag{2}
\end{equation*}
$$

This knocks out the stretching term in (1), and we get the vorticity equation as

$$
\begin{equation*}
\frac{\partial \zeta}{\partial t}+u \frac{\partial \zeta}{\partial x}+v \frac{\partial \zeta}{\partial y}=-\beta v \tag{3}
\end{equation*}
$$

Also, for flows satisfying (2) we can work with a single scalar ψ (streamfunction) rather than u and v separately. ψ is defined indirectly by:

$$
\begin{equation*}
u=-\frac{\partial \psi}{\partial y}, \quad v=\frac{\partial \psi}{\partial x} . \tag{4}
\end{equation*}
$$

Note that for u and v that satisfy (4), then (2) is automatically satisfied:

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=-\frac{\partial^{2} \psi}{\partial x \partial y}+\frac{\partial^{2} \psi}{\partial y \partial x}=-\frac{\partial^{2} \psi}{\partial x \partial y}+\frac{\partial^{2} \psi}{\partial x \partial y}=0 .
$$

ψ also has a nice graphical property: lines of constant ψ are streamlines. To show this, we'll show that the slopes of the two lines are the same. Let $\overrightarrow{d l}=\hat{i} d x+\hat{j} d y$ be a chunk of a line of constant ψ. So $d \psi=0$ on that line. Using chain rule, this expands out to $\partial \psi / \partial x d x+\partial \psi / \partial y d y=0$, or, using (4): $v d x-u d y=0$. So the slope of this line is $d y / d x=v / u$. But slope of streamline passing through the same point is also v / u. So lines of constant ψ and streamlines coincide.

Can write vorticity ζ in terms of ψ as:

$$
\zeta=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}=\frac{\partial}{\partial x}\left(\frac{\partial \psi}{\partial x}\right)-\frac{\partial}{\partial y}\left(-\frac{\partial \psi}{\partial y}\right)=\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}=\nabla_{h}^{2} \psi .
$$

So the vorticity equation (3) becomes

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\nabla_{h}^{2} \psi\right)-\frac{\partial \psi}{\partial y} \frac{\partial}{\partial x}\left(\nabla_{h}^{2} \psi\right)+\frac{\partial \psi}{\partial x} \frac{\partial}{\partial y}\left(\nabla_{h}^{2} \psi\right)=-\beta \frac{\partial \psi}{\partial x} . \tag{5}
\end{equation*}
$$

Consider a reference atmosphere in which the wind is a uniform westerly current, $U(>0)$. Since U is constant (and v is 0), the reference atmosphere ζ is 0 . In view of (4), ψ in the reference atmosphere is $-U y$.

Decompose ψ into reference atmosphere and perturbation parts:

$$
\psi=-U y+\psi^{\prime}
$$

Applying this in (5) yields

$$
\frac{\partial}{\partial t}\left(\nabla_{h}^{2} \psi^{\prime}\right)+\left(U-\frac{\partial \psi^{\prime}}{\partial y}\right) \frac{\partial}{\partial x}\left(\nabla_{h}^{2} \psi^{\prime}\right)+\frac{\partial \psi^{\prime}}{\partial x} \frac{\partial}{\partial y}\left(\nabla_{h}^{2} \psi^{\prime}\right)=-\beta \frac{\partial \psi^{\prime}}{\partial x} .
$$

Now linearize it! Get:

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\nabla_{h}^{2} \psi^{\prime}\right)+U \frac{\partial}{\partial x}\left(\nabla_{h}^{2} \psi^{\prime}\right)=-\beta \frac{\partial \psi^{\prime}}{\partial x} . \tag{6}
\end{equation*}
$$

Seek wavy solutions of (6) of the form

$$
\begin{equation*}
\psi^{\prime}=A \cos (k x-\omega t) . \tag{7}
\end{equation*}
$$

Pre-calculate some of the derivatives (be really careful with the signs!!!)

$$
\begin{aligned}
& \frac{\partial \psi^{\prime}}{\partial x}=-A k \sin (k x-\omega t) \\
& \frac{\partial^{2} \psi^{\prime}}{\partial x^{2}}=-A k^{2} \cos (k x-\omega t)
\end{aligned}
$$

and since $\frac{\partial \psi^{\prime}}{\partial y}=0, \frac{\partial^{2} \psi^{\prime}}{\partial y^{2}}=0$, we see that

$$
\begin{aligned}
& \nabla_{h}^{2} \psi^{\prime}=-A k^{2} \cos (k x-\omega t) \text {. So } \\
& \begin{aligned}
\frac{\partial}{\partial x} \nabla_{h}^{2} \psi^{\prime}=\left(-A k^{2}\right) \frac{\partial}{\partial x} \cos (k x-\omega t)=\left(-A k^{2}\right)(-k) & \sin (k x-\omega t) \\
& =A k^{3} \sin (k x-\omega t)
\end{aligned} \\
& \left.\begin{array}{rl}
\frac{\partial}{\partial t} \nabla_{h}^{2} \psi^{\prime}=\left(-A k^{2}\right) \frac{\partial}{\partial t} \cos (k x-\omega t)=\left(-A k^{2}\right)(-\omega) & {[}
\end{array}-\sin (k x-\omega t)\right] \\
& =
\end{aligned}
$$

The vorticity equation (6) now becomes (careful with signs!!!),

$$
-A k^{2} \omega \sin (k x-\omega t)+U A k^{3} \sin (k x-\omega t)=\beta A k \sin (k x-\omega t)
$$

Divide by common factor $A k \sin (k x-\omega t)$, get

$$
-k \omega+U k^{2}=\beta
$$

Solve for ω :

$$
\begin{equation*}
\omega=U k-\frac{\beta}{k} . \quad \text { Dispersion relation for Rossby waves } \tag{8}
\end{equation*}
$$

Apply this in $c=\frac{\omega}{k}$ to get the Rossby wave phase speed:

$$
c=U-\frac{\beta}{k^{2}} \quad \text { or, in terms of wavelength: } \quad c=U-\beta\left(\frac{\lambda}{2 \pi}\right)^{2}
$$

U (which advects relative vorticity toward east) tries to make wave propagate toward east, while β term tries to make wave propagate toward west (retrogress). For short waves (λ small; k big), U wins so $c>0$ and wave propagates eastward. For long waves (λ small; k big), β wins and wave retrogresses.

How does β term in vorticity eqn try to make wave retrogress? Consider contour plot of $\psi=-U y+\psi^{\prime}$, keeping in mind that lines of constant ψ are streamlines:

In northerlies:

$\partial \zeta / \partial x>0$ (ζ increases toward east), while earth vort advection yields $\partial \zeta / \partial t>0$ (ζ increases with \boldsymbol{t}). As a result, ζ pattern and associated ψ pattern appear to shift westward. Actually, those patterns really do shift westward: patterns (geometrical thing) shifts westward while parcels (physical thing) have an eastward component.

In southerlies:

$\partial \zeta / \partial x<0$ (ζ decreases toward east), while earth vort advection yields $\partial \zeta / \partial t<0$ (ζ decreases with \boldsymbol{t}). As a result, the ζ pattern and associated ψ pattern again shift westward.

