<u>Quick 'n' Dirty Review of Vector Operations</u> <u>METR 3123. Alan Shapiro, Instructor</u>

we operate! help me... he duesnT Know what he's duing This is sick what a disgusting way to starta class VECTOR OPERATION

Scalars

A quantity that has magnitude only is called a <u>scalar</u>. Examples: temperature T, pressure p, east-west speed u, gas constant R_d .

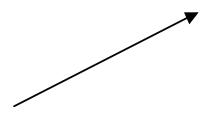
Scalars can be constant (like R_d) or functions of space and time (like T, p, u).

Vectors

A quantity that has magnitude and direction is a <u>vector</u>. e.g., acceleration \vec{a} , velocity \vec{u} , temp gradient ∇T , earth's angular velocity vector $\vec{\Omega}$.

Vectors can also be constant (like $\vec{\Omega}$) or functions of space and time (like $\vec{a}, \vec{u}, \nabla T$).

A vector can be represented by an arrow:



Unit Vectors

A unit vector is a vector that has a magnitude of 1 (and is dimensionless). They are useful for expressing directions.

Consider an arbitrary vector \vec{b} . Its magnitude can be written as $b \equiv |\vec{b}|$. To get the unit vector in the direction of \vec{b} , divide \vec{b} by its magnitude:

$$\hat{\mathbf{b}} \equiv \frac{\vec{\mathbf{b}}}{\mathbf{b}}$$

The hat ^ means "unit vector". Multiplying this equation through by the magnitude b yields:

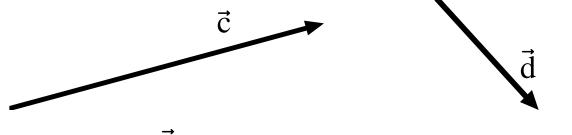
 $\vec{b} = b \hat{b}$

This deceptively simple equation is extremely important. It means:

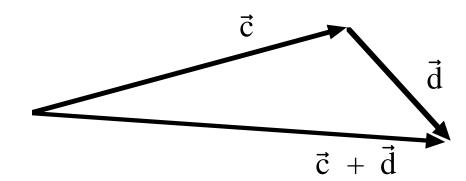
"Any vector can be written as the product of its own magnitude and the unit vector in its own direction"

Vector Addition

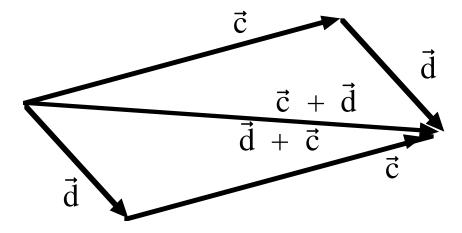
Consider 2 vectors, \vec{c} and \vec{d} :



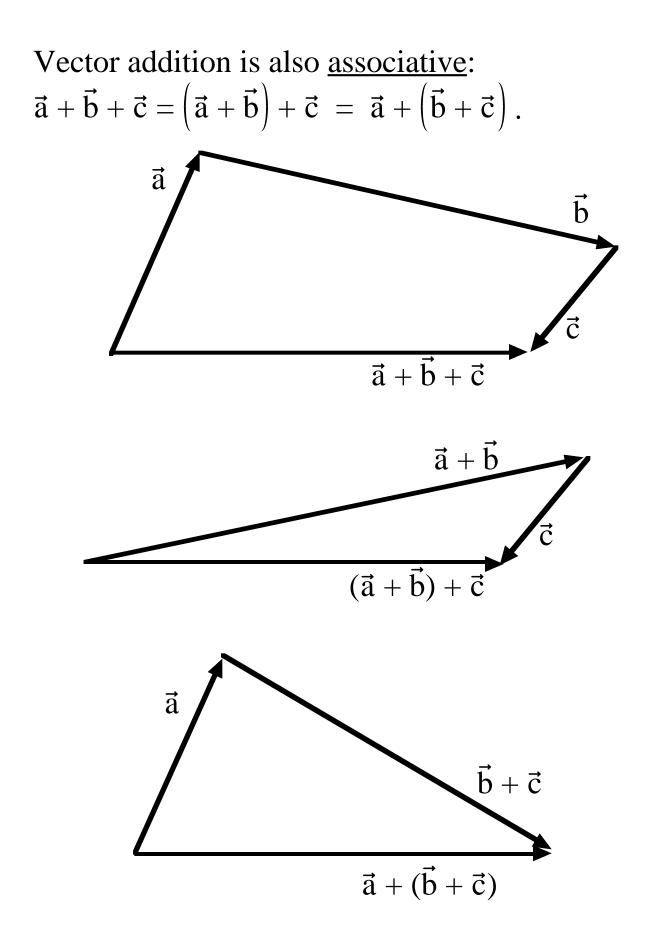
Adding \vec{c} to \vec{d} (tip of first to tail of the second) yields a new vector, $\vec{c} + \vec{d}$:



Get the same vector by adding \vec{d} to \vec{c} :

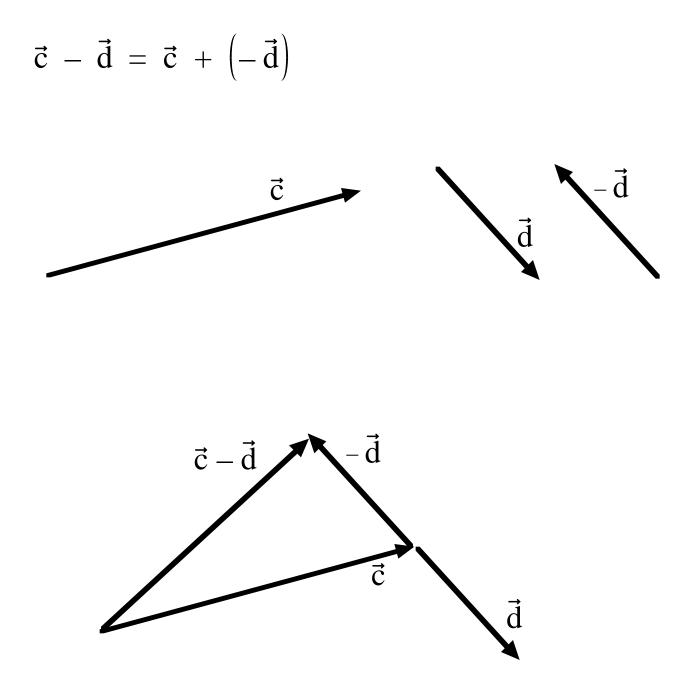


So, vector addition is <u>commutative</u>: $\vec{c} + \vec{d} = \vec{d} + \vec{c}$



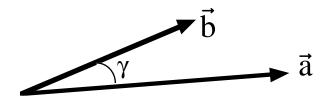
Vector Subtraction

Similar to vector addition: just add the <u>negative</u> of a vector.



Scalar product (dot product)

Consider two vectors \vec{a} and \vec{b} . Let γ be the smallest angle between them:



The scalar (dot) product between \vec{a} and \vec{b} is:

 $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \gamma.$

It's a scalar! Can also write it as,

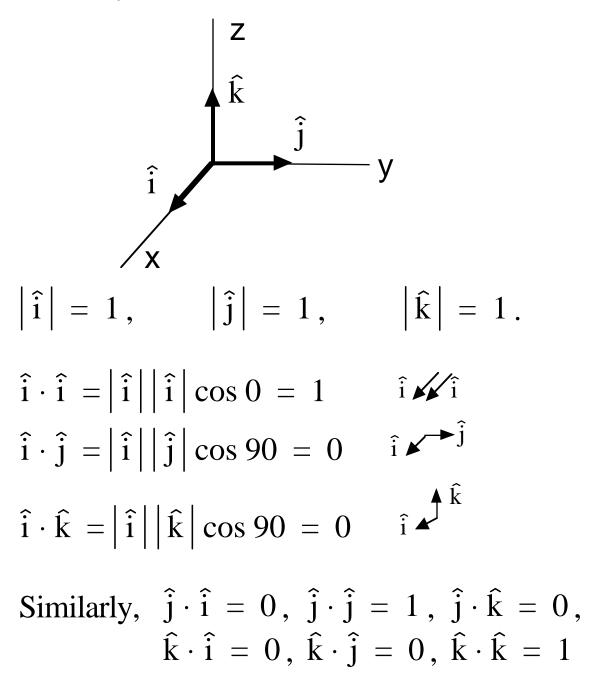
 $\vec{a} \cdot \vec{b} = ab \cos \gamma$, where $a = |\vec{a}|, b = |\vec{b}|$.

The dot product is commutative: $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$, and distributive: $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$.

If $\vec{a} \perp \vec{b}$ then $\vec{a} \cdot \vec{b} = 0$. If $\vec{a} \cdot \vec{b} = 0$ then there are 3 possible scenarios: (i) $\vec{a} = 0$, (ii) $\vec{b} = 0$, (iii) $\vec{a} \perp \vec{b}$.

Unit vectors of Cartesian coord system

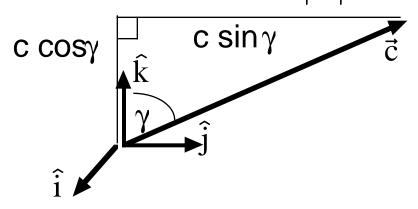
Consider a right-handed Cartesian coordinate system with unit vectors \hat{i} , \hat{j} , \hat{k} . \hat{i} , \hat{j} , \hat{k} are mutually \perp .



Projection (component)

The <u>projection (component)</u> of a vector \vec{c} in a particular direction is the <u>dot product</u> of \vec{c} with the <u>unit vector</u> in that particular direction. It is the "amount" of \vec{c} in that particular direction.

For example, the component of \vec{c} in the vertical direction is $\vec{c} \cdot \hat{k}$. Call it c_z . So $c_z \equiv \vec{c} \cdot \hat{k}$ = $|\vec{c}| |\hat{k}| \cos \gamma = c \cos \gamma$, where γ is the angle between \vec{c} and \hat{k} , and $c \equiv |\vec{c}|$.



Similarly, the components of \vec{c} in the \hat{i} and \hat{j} directions are: $c_x \equiv \vec{c} \cdot \hat{i}$, and $c_y \equiv \vec{c} \cdot \hat{j}$.

Can see that $\vec{c} = c_x \hat{i} + c_y \hat{j} + c_z \hat{k}$, i.e., $\vec{c} = \text{sum of}$ its components in the \hat{i} , \hat{j} , and \hat{k} directions.

More on addition

<u>Component of the sum of 2 vectors is equal to</u> the sum of the components of the 2 vectors.

In other words, consider vectors \vec{a} and \vec{b} , and their sum $\vec{c} \equiv \vec{a} + \vec{b}$. Write \vec{a} , \vec{b} and \vec{c} as,

$$\vec{a} = a_{x}\hat{i} + a_{y}\hat{j} + a_{z}\hat{k},$$

$$\vec{b} = b_{x}\hat{i} + b_{y}\hat{j} + b_{z}\hat{k},$$

$$\vec{c} = c_{x}\hat{i} + c_{y}\hat{j} + c_{z}\hat{k}.$$

Then the sum of \vec{a} and \vec{b} is given by,

$$\vec{c} = (a_x + b_x)\hat{i} + (a_y + b_y)\hat{j} + (a_z + b_z)\hat{k}$$

So the i-component of \vec{c} is: $c_x = a_x + b_x$. So the j-component of \vec{c} is: $c_y = a_y + b_y$. So the k-component of \vec{c} is: $c_z = a_z + b_z$.

More on the scalar (dot) product

With \vec{a} and \vec{b} written as, $\vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$, $\vec{b} = b_x \hat{i} + b_y \hat{j} + b_z \hat{k}$, the scalar product $\vec{a} \cdot \vec{b}$ becomes :

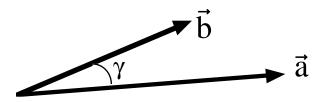
 $\vec{a} \cdot \vec{b} = (a_x\hat{i} + a_y\hat{j} + a_z\hat{k}) \cdot (b_x\hat{i} + b_y\hat{j} + b_z\hat{k})$ $= a_x\hat{i} \cdot (b_x\hat{i} + b_y\hat{j} + b_z\hat{k}) +$ $a_y\hat{j} \cdot (b_x\hat{i} + b_y\hat{j} + b_z\hat{k}) +$ $a_z\hat{k} \cdot (b_x\hat{i} + b_y\hat{j} + b_z\hat{k})$ $= a_xb_x\hat{i} \cdot \hat{i} + a_xb_y\hat{i} \cdot \hat{j} + a_xb_z\hat{i} \cdot \hat{k} +$ $a_yb_x\hat{j} \cdot \hat{i} + a_yb_y\hat{j} \cdot \hat{j} + a_yb_z\hat{j} \cdot \hat{k} +$ $a_zb_x\hat{k} \cdot \hat{i} + a_zb_y\hat{k} \cdot \hat{j} + a_zb_z\hat{k} \cdot \hat{k}$

Since \hat{i} , \hat{j} , \hat{k} are of <u>unit length</u> and are \perp to each other, $\hat{i} \cdot \hat{i} = 1$, $\hat{i} \cdot \hat{j} = 0$, $\hat{i} \cdot \hat{k} = 0$, etc. So previous equation boils down to:

$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$$

Vector product (cross product)

Consider two vectors \vec{a} and \vec{b} . Let γ be the smallest angle between them:

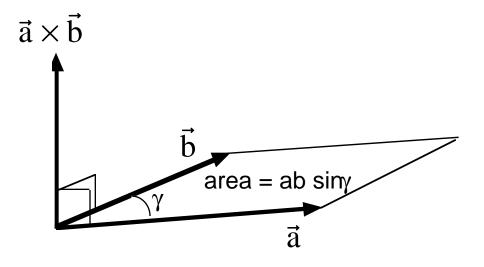


The cross product $\vec{a} \times \vec{b}$ is a vector with 3 properties:

(1) $\vec{a} \times \vec{b}$ is \perp to <u>both</u> \vec{a} and \vec{b} (property 2 excludes one of two possible orientations).

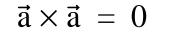
(2) Right-hand rule for direction of $\vec{a} \times \vec{b}$: align fingers of your right hand with \vec{a} then curl your fingers toward \vec{b} . Your thumb indicates direction of $\vec{a} \times \vec{b}$.

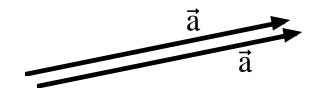
(3) <u>Magnitude</u> of $\vec{a} \times \vec{b}$ = area of trapezoid formed by \vec{a} and \vec{b} : $|\vec{a} \times \vec{b}|$ = $ab \sin \gamma$, where $a \equiv |\vec{a}|$, and $b \equiv |\vec{b}|$. These three properties can be summarized on the following diagram:



The angle γ between \vec{a} and \vec{b} that gives the <u>largest magnitude</u> of $\vec{a} \times \vec{b}$ is 90° (sin90 = 1, area is maximum). But when $\gamma = 90^\circ$, the dot product $\vec{a} \cdot \vec{b}$ is 0 (since $\cos 90 = 0$).

When \vec{a} and \vec{b} are parallel to each other ($\gamma = 0^{\circ}$ or 180°, $\sin\gamma = 0$, area = 0) the cross product $\vec{a} \times \vec{b}$ is 0. But when $\gamma = 0^{\circ}$ or 180°, the dot product $\vec{a} \cdot \vec{b}$ has its largest magnitude.





 $\hat{\mathbf{i}} \times \hat{\mathbf{i}} = 0, \qquad \hat{\mathbf{i}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}}, \qquad \hat{\mathbf{i}} \times \hat{\mathbf{k}} = -\hat{\mathbf{j}}$ $\hat{\mathbf{i}} \checkmark \hat{\mathbf{i}} \qquad \hat{\mathbf{i}} \checkmark \hat{\mathbf{j}} \qquad \hat{\mathbf{i}} \checkmark \hat{\mathbf{j}} \qquad \hat{\mathbf{i}} \checkmark \hat{\mathbf{j}}$

Similarly,

 $\hat{\mathbf{j}} \times \hat{\mathbf{i}} = -\hat{\mathbf{k}}, \qquad \hat{\mathbf{j}} \times \hat{\mathbf{j}} = 0, \qquad \hat{\mathbf{j}} \times \hat{\mathbf{k}} = \hat{\mathbf{i}},$ $\hat{\mathbf{k}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}}, \qquad \hat{\mathbf{k}} \times \hat{\mathbf{j}} = -\hat{\mathbf{i}}, \qquad \hat{\mathbf{k}} \times \hat{\mathbf{k}} = 0$

Help!

It can be shown that $\vec{a} \times \vec{b}$ can be written as a determinant:

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

$$= \hat{i} \left(a_y b_z - a_z b_y \right) + \hat{j} \left(a_z b_x - a_x b_z \right)$$
$$+ \hat{k} \left(a_x b_y - a_y b_x \right)$$

The cross product is <u>not</u> commutative because interchanging 2 rows of a determinant changes it's sign: $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$. This also follows from the right hand rule.

However, the cross product is <u>distributive</u>: $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$.

Scalar triple product

Consider any 3 vectors, \vec{a} , \vec{b} and \vec{c} , and form the expression,

 $\vec{a} \cdot (\vec{b} \times \vec{c}).$

This is a <u>scalar</u> known as the <u>scalar triple</u> <u>product</u>. (Why is it a scalar? \vec{a} is a vector and $\vec{b} \times \vec{c}$ is a vector. The <u>dot product</u> between two vectors -- in this case \vec{a} and $\vec{b} \times \vec{c}$ -- is a scalar.)

What does $\vec{a} \cdot (\vec{b} \times \vec{c})$ look like when expanded out?

Recall that
$$\vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$
, or equivalently,

$$\vec{b} \times \vec{c} = \hat{i} \left(b_y c_z - b_z c_y \right) + \hat{j} \left(b_z c_x - b_x c_z \right) + \hat{k} \left(b_x c_y - b_y c_x \right)$$

Now take the dot product of \vec{a} with $\vec{b} \times \vec{c}$:

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = (\hat{i} a_x + \hat{j} a_y + \hat{k} a_z) \cdot (\vec{b} \times \vec{c}).$$

Plug in the expression for $\vec{b} \times \vec{c}$ and use fact that $\hat{i} \cdot \hat{i} = 1$, $\hat{i} \cdot \hat{j} = 0$, $\hat{i} \cdot \hat{k} = 0$, etc, to get,

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = a_x (b_y c_z - b_z c_y) + a_y (b_z c_x - b_x c_z)$$

+ $a_z (b_x c_y - b_y c_x).$

This means that,
$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$
.

If you interchange 2 rows once, the determinant changes sign. If you interchange 2 rows twice, the determinant stays the same. So:

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = -\vec{c} \cdot (\vec{b} \times \vec{a}) = -\vec{a} \cdot (\vec{c} \times \vec{b})$$
$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{c} \times \vec{a}) = \vec{c} \cdot (\vec{a} \times \vec{b})$$

Vector triple product

The expression,

 $\vec{a} \times (\vec{b} \times \vec{c})$

is a vector known as the vector triple product.

By examining the components of $\vec{a} \times (\vec{b} \times \vec{c})$ it can be shown that,

$$\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b} (\vec{a} \cdot \vec{c}) - \vec{c} (\vec{a} \cdot \vec{b}).$$

The location of the parentheses does matter! In general, $\vec{a} \times (\vec{b} \times \vec{c}) \neq (\vec{a} \times \vec{b}) \times \vec{c}$. To see this for a particular case, let $\vec{b} = \vec{a}$ and compare $\vec{a} \times (\vec{a} \times \vec{c})$ with $(\vec{a} \times \vec{a}) \times \vec{c}$.

$$\vec{a} \times (\vec{a} \times \vec{c}) = \vec{a} (\vec{a} \cdot \vec{c}) - \vec{c} (\vec{a} \cdot \vec{a})$$
, while
 $(\vec{a} \times \vec{a}) \times \vec{c} = 0$. Thus, they are not equal.

Differentiation rules

Suppose \vec{a} and \vec{b} are vectors and m is a scalar. Suppose \vec{a} , \vec{b} and m are all functions of a scalar (say, time t). Then,

$$\frac{d}{dt} \left(\vec{a} + \vec{b} \right) = \frac{d\vec{a}}{dt} + \frac{d\vec{b}}{dt},$$

$$\frac{d}{dt} \left(m\vec{a} \right) = m \frac{d\vec{a}}{dt} + \frac{dm}{dt} \vec{a},$$

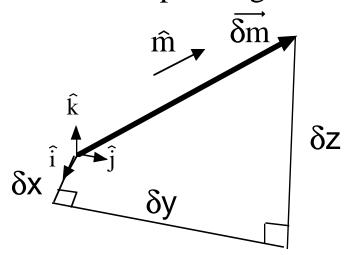
$$\frac{d}{dt} \left(\vec{a} \cdot \vec{b} \right) = \frac{d\vec{a}}{dt} \cdot \vec{b} + \vec{a} \cdot \frac{d\vec{b}}{dt},$$

$$\frac{d}{dt} \left(\vec{a} \times \vec{b} \right) = \frac{d\vec{a}}{dt} \times \vec{b} + \vec{a} \times \frac{d\vec{b}}{dt},$$

Directional derivative. Del operator ∇

The rate of change of temperature T in the \hat{i} (east) direction is $\frac{\partial T}{\partial x}$. Similarly, the rate of change of temperature in the north and vertical directions are $\frac{\partial T}{\partial y}$, and $\frac{\partial T}{\partial z}$, respectively.

What about the rate of change of temperature in an arbitrary direction? Consider the direction specified by a unit vector \hat{m} . Consider a tiny vector element $\overline{\delta m}$ pointing in that direction.



 $\vec{\delta m} = \delta x \,\hat{i} + \delta y \,\hat{j} + \delta z \,\hat{k} \,, \quad \delta m = \left| \vec{\delta m} \right| \,,$ $\hat{m} = \frac{\vec{\delta m}}{\vec{\delta m}} = \frac{\delta x}{\vec{\delta m}} \,\hat{i} \,+ \,\frac{\delta y}{\vec{\delta m}} \,\hat{j} \,+ \,\frac{\delta z}{\vec{\delta m}} \,\hat{k} \,.$

 $\overline{\delta m}$ extends from (x,y,z) to (x+ δx , y+ δy , z+ δz). The temperature difference δT across this tiny distance $\overline{\delta m}$ is:

$$\delta T = T(x+\delta x, y+\delta y, z+\delta z) - T(x, y, z)$$
.

Consider Taylor expansion of T about the starting point x, y, z:

 $T(x+\delta x, y+\delta y, z+\delta z) = T(x, y, z) +$ $+ \frac{\partial T}{\partial x} (x+\delta x - x) + \frac{\partial T}{\partial y} (y+\delta y - y)$ $+ \frac{\partial T}{\partial z} (z+\delta z - z) + \text{higher order terms}$ $\therefore T(x+\delta x, y+\delta y, z+\delta z) - T(x, y, z) =$ $\frac{\partial T}{\partial x} \delta x + \frac{\partial T}{\partial y} \delta y + \frac{\partial T}{\partial z} \delta z + \text{h.o.t}$ $\therefore \delta T = \frac{\partial T}{\partial x} \delta x + \frac{\partial T}{\partial y} \delta y + \frac{\partial T}{\partial z} \delta z + \text{h.o.t}.$

To get a rate of change of temperature in the direction of interest, divide δT by length $\delta m.$

$$\frac{\delta T}{\delta m} = \frac{\partial T}{\partial x} \frac{\delta x}{\delta m} + \frac{\partial T}{\partial y} \frac{\delta y}{\delta m} + \frac{\partial T}{\partial z} \frac{\delta z}{\delta m} + \frac{h.o.t}{\delta m}$$

Can rewrite this using dot product notation,

$$\frac{\delta T}{\delta m} = \begin{pmatrix} \frac{\partial T}{\partial x} \\ \frac{\partial T}{\partial y} \\ \frac{\partial T}{\partial z} \end{pmatrix} \cdot \begin{pmatrix} \frac{\delta x}{\delta m} \\ \frac{\delta y}{\delta m} \\ \frac{\delta z}{\delta m} \end{pmatrix} + \frac{h.o.t}{\delta m}$$

or, using
$$\hat{m} = \frac{\delta x}{\delta m}\hat{i} + \frac{\delta y}{\delta m}\hat{j} + \frac{\delta z}{\delta m}\hat{k}$$

$$\frac{\delta T}{\delta m} = \begin{pmatrix} \frac{\partial T}{\partial x} \\ \frac{\partial T}{\partial y} \\ \frac{\partial T}{\partial z} \end{pmatrix} \cdot \hat{m} + \frac{h.o.t}{\delta m}$$

In the limit of $\delta m \rightarrow 0$, h.o.t $\rightarrow 0$ and h.o.t/ $\delta m \rightarrow 0$ since h.o.t ~ $(\delta m)^2$. So get

$$\frac{\partial T}{\partial m} \equiv \lim_{\delta m \to 0} \frac{\delta T}{\delta m} = \begin{pmatrix} \frac{\partial T}{\partial x} \\ \frac{\partial T}{\partial y} \\ \frac{\partial T}{\partial z} \end{pmatrix} \cdot \hat{m}$$

Introduce the <u>del operator</u> ∇ defined by,

$$\nabla \equiv \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z}$$

 ∇ acting on a scalar *f* is ∇f . It's the <u>gradient</u> of *f*, a vector. Temperature gradient is given by,

$$\nabla T = \hat{i} \frac{\partial T}{\partial x} + \hat{j} \frac{\partial T}{\partial y} + \hat{k} \frac{\partial T}{\partial z} = \begin{pmatrix} \frac{\partial T}{\partial x} \\ \frac{\partial T}{\partial y} \\ \frac{\partial T}{\partial z} \end{pmatrix}$$

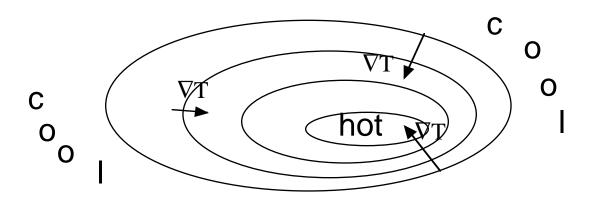
So the rate of change of T in the direction \hat{m} (directional derivative in direction of \hat{m}) is given by,

$$\frac{\partial \mathbf{T}}{\partial \mathbf{m}} = \nabla \mathbf{T} \cdot \hat{\mathbf{m}}.$$

Important! If you consider a direction \hat{m} to be perpendicular to ∇T then $\partial T/\partial m = 0$, i.e., there is no change in that direction. In other words, ∇T is \perp to surfaces of constant T.

Also note that the <u>largest positive value</u> of $\partial T/\partial m$ is attained when \hat{m} is in the direction of ∇T . So ∇T points in the direction of greatest change in T -- from lower to higher values of T.

These ideas are illustrated in this diagram:



Divergence

Take $\nabla \cdot$ (an arbitrary vector field \vec{a}):

$$\nabla \cdot \vec{a} = \left(\hat{i}\frac{\partial}{\partial x} + \hat{j}\frac{\partial}{\partial y} + \hat{k}\frac{\partial}{\partial z}\right) \cdot \left(\hat{i}a_{x} + \hat{j}a_{y} + \hat{k}a_{z}\right)$$
$$= \left(\hat{i}\frac{\partial}{\partial x} \cdot \left(\hat{i}a_{x} + \hat{j}a_{y} + \hat{k}a_{z}\right)\right)$$
$$+ \left(\hat{j}\frac{\partial}{\partial y} \cdot \left(\hat{i}a_{x} + \hat{j}a_{y} + \hat{k}a_{z}\right)\right)$$
$$+ \left(\hat{k}\frac{\partial}{\partial z} \cdot \left(\hat{i}a_{x} + \hat{j}a_{y} + \hat{k}a_{z}\right)\right)$$

Expand out all the terms and recall that, $\hat{i} \cdot \hat{i} = 1$, $\hat{i} \cdot \hat{j} = 0$, $\hat{i} \cdot \hat{k} = 0$, etc. Get:

$$\nabla \cdot \vec{a} = \frac{\partial a_x}{\partial x} + \frac{\partial a_y}{\partial y} + \frac{\partial a_z}{\partial z}$$

This is known as the divergence of \vec{a} . Note that \vec{a} is a vector and ∇ is a vector operator. But $\nabla \cdot \vec{a}$ is a scalar (much as the dot product between 2 vectors is a scalar).

<u>Curl</u>

Consider an arbitrary vector field \vec{a} . See what happens when you take $\nabla \times \vec{a}$:

$$\nabla \times \vec{a} = \left(\hat{i}\frac{\partial}{\partial x} + \hat{j}\frac{\partial}{\partial y} + \hat{k}\frac{\partial}{\partial z}\right) \times \left(\hat{i}a_{x} + \hat{j}a_{y} + \hat{k}a_{z}\right)$$
$$= \hat{i}\frac{\partial}{\partial x} \times \left(\hat{i}a_{x} + \hat{j}a_{y} + \hat{k}a_{z}\right)$$
$$+ \hat{j}\frac{\partial}{\partial y} \times \left(\hat{i}a_{x} + \hat{j}a_{y} + \hat{k}a_{z}\right)$$
$$+ \hat{k}\frac{\partial}{\partial z} \times \left(\hat{i}a_{x} + \hat{j}a_{y} + \hat{k}a_{z}\right)$$

Expand out all the terms and recall that, $\hat{i} \times \hat{i} = 0$, $\hat{i} \times \hat{j} = \hat{k}$, $\hat{i} \times \hat{k} = -\hat{j}$, etc. Get:

$$\nabla \times \vec{a} = \hat{i} \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z} \right) + \hat{j} \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x} \right) + \hat{k} \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y} \right)$$

 $\nabla \times \vec{a}$ is known as the <u>curl</u> of \vec{a} . It is a <u>vector</u>!

Don't want to memorize that nasty formula for $\nabla \times \vec{a}$? No problem! The curl can also be written as a determinant:

$$\nabla \times \vec{a} = \left(\hat{i}\frac{\partial}{\partial x} + \hat{j}\frac{\partial}{\partial y} + \hat{k}\frac{\partial}{\partial z}\right) \times \left(\hat{i}a_{x} + \hat{j}a_{y} + \hat{k}a_{z}\right)$$
$$= \left| \begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ a_{x} & a_{y} & a_{z} \end{array} \right|$$
$$= \hat{i}\left(\frac{\partial a_{z}}{\partial y} - \frac{\partial a_{y}}{\partial z}\right) + \hat{j}\left(\frac{\partial a_{x}}{\partial z} - \frac{\partial a_{z}}{\partial x}\right)$$
$$+ \hat{k}\left(\frac{\partial a_{y}}{\partial x} - \frac{\partial a_{x}}{\partial y}\right).$$

Same result as before.

Differentiation formulas involving ∇

If \vec{a} and \vec{b} are vectors and f is a scalar then,

$$\begin{aligned} \nabla \cdot \left(\vec{a} + \vec{b} \right) &= \nabla \cdot \vec{a} + \nabla \cdot \vec{b}, \\ \nabla \times \left(\vec{a} + \vec{b} \right) &= \nabla \times \vec{a} + \nabla \times \vec{b}, \\ \nabla \cdot \left(f \vec{a} \right) &= f \left(\nabla \cdot \vec{a} \right) + \left(\nabla f \right) \cdot \vec{a}, \\ \nabla \times \left(f \vec{a} \right) &= f \left(\nabla \times \vec{a} \right) + \left(\nabla f \right) \times \vec{a}, \\ \nabla \cdot \left(\vec{a} \times \vec{b} \right) &= \vec{b} \cdot \left(\nabla \times \vec{a} \right) - \vec{a} \cdot \left(\nabla \times \vec{b} \right), \\ \nabla \times \left(\vec{a} \times \vec{b} \right) &= \vec{a} \left(\nabla \cdot \vec{b} \right) + \left(\vec{b} \cdot \nabla \right) \vec{a} \\ &- \vec{b} \left(\nabla \cdot \vec{a} \right) - \left(\vec{a} \cdot \nabla \right) \vec{b}, \\ \nabla \left(\vec{a} \cdot \vec{b} \right) &= \left(\vec{a} \cdot \nabla \right) \vec{b} + \left(\vec{b} \cdot \nabla \right) \vec{a} \\ &+ \vec{a} \times \left(\nabla \times \vec{b} \right) + \vec{b} \times \left(\nabla \times \vec{a} \right) \end{aligned}$$

٠

Further Reading on Vector Analysis

Baxandall, P., and Liebeck, H., 1986: Vector Calculus. Oxford University Press, 550 pp.
A detailed, rigorous and painful account of vector calculus.
Much more mathematical than the other texts on this list. Not for the squeamish.

Hay, G. E., 1953: Vector and Tensor Analysis. Dover, 193 pp.

A good book: well-written, clear, complete, and relatively short. The basics on vector analysis are covered in just 3 short chapters: I, IV and V. The remainder of the book covers applications of vector analysis and a short section on tensors. It's a Dover paperback = cheap!

Kreyszig, E. K., 1993: Advanced Engineering Mathematics, 7th ed. Wiley, ~ 1000 pp.

It's a good reference for many aspects of applied math (advanced calculus, differential equations, complex analysis, vector analysis, etc). It is well-written and is sufficiently complete for your vector analysis needs. Can buy it online for next to nothing.

Schey, H. M., 1992: *Div, Grad, Curl and All That*, 2nd ed. W. W. Norton, 163 pp.

I prefer the Hay book to this one but maybe you'll like this one better. It's well-written and short, but not quite as complete as the Hay book.