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Quick 'n' Dirty Review of Vector Operations
METR 3123.  Alan Shapiro, Instructor
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Scalars

A quantity that has magnitude only is called a
scalar.  Examples:  temperature T, pressure p,
east-west speed u, gas constant Rd.

Scalars can be constant (like Rd) or functions of
space and time (like T, p, u).

Vectors

A quantity that has magnitude and direction is a
vector.  e.g., acceleration  a , velocity  u , temp
gradient   ∇ T , earth's angular velocity vector  Ω .

Vectors can also be constant (like  Ω ) or
functions of space and time (like  a ,  u ,   ∇ T ).

A vector can be represented by an arrow:
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Unit Vectors

A unit vector is a vector that has a magnitude of
1 (and is dimensionless).  They are useful for
expressing directions.

Consider an arbitrary vector  b .  Its magnitude

can be written as 
  

b ≡ b .  To get the unit vector

in the direction of  b , divide  b  by its magnitude:

  
b ≡ b

b

The hat   means "unit vector". Multiplying this
equation through by the magnitude b yields:

 
b = b b

This deceptively simple equation is extremely
important.  It means:

"Any vector can be written as the product of
its own magnitude and the unit vector in its
own direction"
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Vector Addition

Consider 2 vectors,  c  and  d :

 c

          

 d

Adding  c  to  d  (tip of first to tail of the second)
yields a new vector,  c + d :

            

 c
 d

 c + d

Get the same vector by adding  d  to  c :
 c

 d
 c + d

 c d

 d + c

So, vector addition is commutative:  c + d = d + c
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Vector addition is also associative:
 

a + b + c = a + b + c = a + b + c .
            

 a
 b

 c
 a + b + c

            
 c

 (a + b) + c

 a + b

 a

 b + c

 
 a + (b + c)
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Vector Subtraction

Similar to vector addition:  just add the negative
of a vector.

 
c – d = c + – d

 c
 d

 – d

 c
 d

 – d c – d
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Scalar product (dot product)

Consider two vectors  a and b .  Let γ be the
smallest angle between them:

γ  a

 b

The scalar (dot) product between  a and b  is:

  
a ⋅ b = a b cos γ .

It's a scalar!  Can also write it as,

  a ⋅ b = ab cos γ ,   where 
 

a = a , b = b .

The dot product is commutative:   a ⋅ b = b ⋅ a ,
and distributive:   a ⋅ (b + c) = a ⋅ b + a ⋅ c .

If   a ⊥ b   then   a ⋅ b = 0 .
If   a ⋅ b = 0  then there are 3 possible scenarios:
(i)  a  = 0,  (ii)  b  = 0, (iii)   a ⊥ b .
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Unit vectors of Cartesian coord system

Consider a right-handed Cartesian coordinate
system with unit vectors  i, j, k .   i, j, k  are
mutually  ⊥ .

 i

x

y

z

 k
 j

 
i = 1 ,

 
j = 1 ,

 
k = 1 .

  
i ⋅ i = i i cos 0 = 1        i  i

  
i ⋅ j = i j cos 90 = 0      i

 j

  
i ⋅ k = i k cos 90 = 0       i

 k

Similarly,   j ⋅ i = 0 ,   j ⋅ j = 1 ,   j ⋅ k = 0 ,

         

  k ⋅ i = 0 ,   k ⋅ j = 0 ,   k ⋅ k = 1
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Projection (component)

The projection (component) of a vector  c  in a
particular direction is the dot product of  c  with
the unit vector in that particular direction.  It is
the "amount" of  c  in that particular direction.

For example, the component of  c  in the vertical
direction is   c ⋅ k .  Call it  cz .  So   cz ≡ c ⋅ k
  

= c k cos γ = c cosγ , where γ is the angle

between  c  and  k , and    c ≡ c .

γ

c cosγ c sin γ

 i

 j

 k
 c

Similarly, the components of  c  in the  i  and  j

directions are:   cx ≡ c ⋅ i , and   cy ≡ c ⋅ j .

Can see that  c = cxi + cyj + czk , i.e.,  c  = sum of

its components in the  i, j, and k  directions.
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More on addition

Component of the sum of 2 vectors is equal to
the sum of the components of the 2 vectors.

In other words, consider vectors  a  and  b , and
their sum   c ≡ a + b .  Write  a ,  b  and  c  as,

 a = axi + ayj + azk ,

 b = b xi + b yj + b zk ,

 c = cxi + cyj + czk .

Then the sum of  a  and  b  is given by,

 c = ax + b x i + ay + b y j + az + b z k

So the i-component of  c  is:    cx = ax + b x .
So the j-component of  c  is:    cy = ay + b y .

So the k-component of  c  is:    cz = az + b z .
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More on the scalar (dot) product

With  a  and  b  written as,  a = axi + ayj + azk ,
 b = b xi + b yj + b zk , the scalar product   a ⋅ b

becomes :

  a ⋅ b = (axi + ayj + azk) ⋅ (b xi + b yj + b zk)

      = axi ⋅ (b xi + b yj + b zk) +

     ayj ⋅ (b xi + b yj + b zk) +

     azk ⋅ (b xi + b yj + b zk)

      = axb x i ⋅ i + axb y i ⋅j + axb z i ⋅k +

     ayb x j ⋅ i + ayb y j ⋅j + ayb z j ⋅k +

     azb x k ⋅ i + azb y k ⋅j + azb z k ⋅k

Since  i, j, k  are of unit length and are  ⊥  to each
other,   i ⋅ i = 1, i ⋅ j = 0, i ⋅ k = 0 , etc.  So
previous equation boils down to:

    a ⋅ b = axb x + ayb y + azb z
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Vector product (cross product)

Consider two vectors  a and b .  Let γ be the
smallest angle between them:

γ  a

 b

The cross product   a × b  is a vector with 3
properties:

(1)    a × b  is  ⊥  to both  a and b  (property 2 
excludes one of two possible orientations).

(2)  Right-hand rule for direction of   a × b : 
align fingers of your right hand with  a  then 
curl your fingers toward  b .  Your thumb 
indicates direction of   a × b .

(3)  Magnitude of   a × b  = area of trapezoid

formed by  a and b :
  
a × b = ab sin γ,

where   a ≡ a , and 
  

b ≡ b .
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These three properties can be summarized on
the following diagram:

            

γ
area = ab sinγ

 a

 b

  a × b

The angle γ between  a and b  that gives the
largest magnitude of   a × b  is 90° (sin90 = 1,
area is maximum).  But when γ = 90°, the dot
product   a ⋅ b  is 0 (since cos 90 = 0).

When  a and b  are parallel to each other (γ = 0°
or 180°, sinγ = 0, area = 0) the cross product
  a × b  is 0.  But when γ = 0° or 180°, the dot

product   a ⋅ b  has its largest magnitude.
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  a × a = 0

 a

 a

  i × i = 0 ,   i × j = k ,         i × k = – j

     
 i  i  i

 j

 k  –j

 k

i

Similarly,

  j × i = – k ,   j × j = 0 ,   j × k = i ,

   k × i = j ,       k × j = – i ,    k × k = 0
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It can be shown that   a × b  can be written as a
determinant:

  

a × b =

i j k

ax ay az

b x b y b z

 
= i ay b z – az b y + j az b x – ax b z

 
+ k ax b y – ay b x .

The cross product is not commutative because
interchanging 2 rows of a determinant changes
it's sign:    a × b = – b × a .  This also follows
from the right hand rule.

However, the cross product is distributive:
  

a × b + c = a × b + a × c .



16

Scalar triple product

Consider any 3 vectors,  a, b and c , and form the
expression,

  
a ⋅ b × c .

This is a scalar known as the scalar triple
product.  (Why is it a scalar?   a  is a vector and
  b × c  is a vector.  The dot product between two

vectors -- in this case  a  and   b × c  -- is a scalar.)

What does   a ⋅ (b × c)  look like when expanded
out?

Recall that 

  

b × c =

i j k

b x b y b z

cx cy cz

, or equivalently,

  
b × c = i b y cz – b z cy + j b z cx – b x cz

 
+ k b x cy – b y cx .
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Now take the dot product of  a  with   b × c :

  
a ⋅ b × c   

  
= i ax + j ay + k az ⋅ b × c .

Plug in the expression for   b × c  and use fact that
  i ⋅ i = 1, i ⋅ j = 0, i ⋅ k = 0 , etc, to get,

  a ⋅ (b × c) = ax(b ycz – b zcy) + ay(b zcx – b xcz)

      + az (b x cy – b y cx) .

This means that, 

  

a ⋅ b× c =
ax ay az
b x b y b z
cx cy cz

.

If you interchange 2 rows once, the determinant
changes sign.  If you interchange 2 rows twice,
the determinant stays the same.  So:

  
a ⋅ b × c = – c ⋅ b × a = – a ⋅ c × b
  

a ⋅ b × c = b ⋅ c × a = c ⋅ a × b
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Vector triple product

The expression,

  
a × b × c

is a vector known as the vector triple product.

By examining the components of 
  

a × b × c  it
can be shown that,

  
a × b × c = b a ⋅ c – c a ⋅ b .

The location of the parentheses does matter!

In general, 
  

a × b × c ≠ a × b × c .

To see this for a particular case, let  b = a  and

compare    a × a × c with a × a × c .

  a × a × c = a a ⋅ c – c a ⋅ a , while
  a × a × c = 0 .  Thus, they are not equal.

  0
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Differentiation rules

Suppose  a and b  are vectors and m is a scalar.
Suppose  a, b and m  are all functions of a scalar
(say, time t).  Then,

 d
dt

a + b = da
dt

+ db
dt ,

 d
dt

ma = m da
dt

+ dm
dt

a ,

  d
dt

a ⋅ b = da
dt

⋅ b + a ⋅ db
dt ,

  d
dt

a × b = da
dt

× b + a × db
dt .
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Directional derivative.  Del operator ∇∇∇∇

The rate of change of temperature T in the  i

(east) direction is 
  ∂T

∂x .  Similarly, the rate of
change of temperature in the north and vertical

directions are 
  ∂T

∂y , and 
  ∂T

∂z , respectively.

What about the rate of change of temperature in
an arbitrary direction?   Consider the direction
specified by a unit vector  m .  Consider a tiny

vector element   δm  pointing in that direction.

δx δy

δz i  j

 k

 m
  δm

  δm = δx i + δy j + δz k ,     
  

δm = δm ,
  

m = δm
δm   

  
= δx

δm
i +

δy
δm

j + δz
δm

k .
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  δm  extends from (x,y,z) to  (x+δx, y+δy, z+δz).
The temperature difference δT across this tiny
distance   δm  is:

  δT = T(x+δx, y+δy, z+δz) – T(x, y, z) .

Consider Taylor expansion of T about the
starting point x, y, z:

  T(x+δx, y+δy, z+δz) = T(x, y, z) +

  
+ ∂T

∂x (x+δx – x) + ∂T
∂y (y+δy – y)

  
+ ∂T

∂z (z+δz – z) + higher order terms

  ∴ T(x+δx, y+δy, z+δz) – T(x ,y, z) =

  ∂T
∂x δx + ∂T

∂y δy + ∂T
∂z δz  + h.o.t

  ∴ δ T = ∂T
∂x δx + ∂T

∂y δy + ∂T
∂z δz + h.o.t.
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To get a rate of change of temperature in the
direction of interest, divide δT by length δm.

  δT
δm

= ∂T
∂x

δx
δm

+ ∂T
∂y

δy
δm

+ ∂T
∂z

δz
δm

+ h.o.t
δm

Can rewrite this using dot product notation,

  

δT
δm

=

∂T
∂x
∂T
∂y
∂T
∂z

⋅

δx
δm
δy
δm
δz
δm

+ h.o.t
δm

or, using  
  

m = δx
δm

i +
δy
δm

j + δz
δm

k :

  

δT
δm

=

∂T
∂x
∂T
∂y
∂T
∂z

⋅ m + h.o.t
δm
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In the limit of δm  →  0, h.o.t  →  0 and h.o.t/δm →  0  since  h.o.t  ~ (δm)2.  So get

  

  

∂T
∂m

≡ lim
δm→ 0

δT
δm

=

∂T
∂x
∂T
∂y
∂T
∂z

⋅ m

Introduce the del operator ∇  defined by,
  ∇ ≡ i ∂

∂x + j ∂
∂y + k ∂

∂z

∇ acting on a scalar f is ∇ f.  It's the gradient of f,

a vector.  Temperature gradient is given by,

  

∇ T = i ∂T
∂x + j ∂T

∂y + k ∂T
∂z =

∂T
∂x
∂T
∂y
∂T
∂z
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So the rate of change of T in the direction  m
(directional derivative in direction of  m ) is given
by,

  ∂T
∂m = ∇ T ⋅ m .

Important!  If you consider a direction  m  to be
perpendicular to ∇Τ  then    ∂T ∂m∂T ∂m = 0 , i.e.,
there is no change in that direction.  In other
words, ∇Τ  is  ⊥  to surfaces of constant T.

Also note that the largest positive value of
  ∂T ∂m∂T ∂m  is attained when  m  is in the direction of

∇Τ .  So ∇Τ  points in the direction of greatest
change in T -- from lower to higher values of T.

These ideas are illustrated in this diagram:

hot
c
o

o
l

c
o
o

l  ∇ T

  ∇ T
  ∇ T
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Divergence

Take ∇   ⋅ (an arbitrary vector field  a ):

  
∇ ⋅ a = i ∂

∂x + j ∂
∂y + k ∂

∂z ⋅ iax + jay + kaz

  
= i ∂

∂x ⋅ i ax + j ay + k az

   
  

+ j ∂
∂y ⋅ i ax + j ay + k az

   
  

+ k ∂
∂z ⋅ i ax + j ay + k az

Expand out all the terms and recall that,
  i ⋅ i = 1, i ⋅ j = 0, i ⋅ k = 0 , etc.  Get:

  
∇ ⋅ a =

∂ax
∂x +

∂ay
∂y +

∂az
∂z .

This is known as the divergence of  a .  Note that
 a  is a vector and ∇  is a vector operator.  But
  ∇ ⋅ a   is a scalar (much as the dot product

between 2 vectors is a scalar).
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Curl

Consider an arbitrary vector field  a .  See what
happens when you take ∇   ×  a :

  
∇ × a = i ∂

∂x + j ∂
∂y + k ∂

∂z × iax + jay + kaz

  
= i ∂

∂x × i ax + j ay + k az

   
  

+ j ∂
∂y × i ax + j ay + k az

   
  

+ k ∂
∂z × i ax + j ay + k az

Expand out all the terms and recall that,
  i × i = 0, i × j = k, i × k = – j , etc.  Get:

  
∇ × a = i

∂az
∂y –

∂ay
∂z + j

∂ax
∂z –

∂az
∂x

  
+ k

∂ay
∂x –

∂ax
∂y .
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  ∇ × a   is known as the curl of  a .  It is a vector!

Don't want to memorize that nasty formula for
  ∇ × a ?  No problem!  The curl can also be

written as a determinant:

  
∇ × a = i ∂

∂x + j ∂
∂y + k ∂

∂z × iax + jay + kaz

  

=

i j k

∂
∂x

∂
∂y

∂
∂z

ax ay az

  
= i

∂az
∂y –

∂ay
∂z + j

∂ax
∂z –

∂az
∂x

  
+ k

∂ay
∂x –

∂ax
∂y .

Same result as before.
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Differentiation formulas involving     ∇∇

If  a and b  are vectors and f is a scalar then,

  
∇ ⋅ a + b = ∇ ⋅ a + ∇ ⋅ b ,
  

∇ × a + b = ∇ × a + ∇ × b ,
  

∇ ⋅ fa = f (∇ ⋅ a) + (∇ f) ⋅ a ,
  

∇ × fa = f (∇ × a) + (∇ f) × a ,
  

∇ ⋅ a × b = b ⋅ (∇ × a) – a ⋅ (∇ × b) ,
  

∇ × a × b = a (∇ ⋅ b) + (b ⋅ ∇ ) a

  
– b (∇ ⋅ a) – (a ⋅ ∇ ) b ,

  
∇ a ⋅ b = (a ⋅ ∇ ) b + (b ⋅ ∇ ) a

 
  

+ a × (∇ × b) + b × (∇ × a) .
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Further Reading on Vector Analysis

Baxandall, P., and Liebeck, H., 1986:  Vector
     Calculus.  Oxford University Press,  550 pp.
A detailed, rigorous and painful account of vector calculus.
Much more mathematical than the other texts on this list.  Not
for the squeamish.

Hay, G. E., 1953:  Vector and Tensor Analysis.
     Dover,  193 pp.
A good book: well-written, clear, complete, and relatively short.
The basics on vector analysis are covered in just 3 short
chapters:  I, IV and V.  The remainder of the book covers
applications of vector analysis and a short section on tensors.
It's a Dover paperback = cheap!

Kreyszig, E. K., 1993:  Advanced Engineering
     Mathematics, 7th ed. Wiley, ~ 1000 pp.
It's a good reference for many aspects of applied math
(advanced calculus, differential equations, complex analysis,
vector analysis, etc).  It is well-written and is sufficiently
complete for your vector analysis needs.  Can buy it online for
next to nothing.

Schey, H. M., 1992:  Div, Grad, Curl and All
     That, 2nd ed. W. W. Norton, 163 pp.
I prefer the Hay book to this one but maybe you'll like this one
better.  It's well-written and short, but not quite as complete as
the Hay book.


