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Mass Conservation

Consider an infinitesimal fluid parcel of density p and volume
dV. It's mass is unchanged no matter how it moves or deforms,

p OV = const (for a parcel)
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These are all equivalent Lagrangian expressions of mass cons?.

To get a hybrid Lagrangian/Eulerian form of mass cons®, apply
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Eqn (*) is called the Mass Conservation eq®. [Also referred to



as "mass continuity eq" but that's a bad name for it -- mass is
no more or less continuous than any other variable.]

Get a purely Eulerian form of mass conservation, by expressing
Dp/Dt in (*) in Eulerian form.
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Combine last 2 terms to get "flux form" of mass cons” eq™:
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Eqns (**) and (***) are equivalent, purely Eulerian forms of
mass consh.

All of the above eqns (Lag, Eulerian, or hybrid) are exact forms
of mass cons? -- no approximations made.

Some approximate forms of mass cons?

Let po(z) be horiz average of p. Define perturbation density, p’:
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Substitute P =Po+ P’ into (¥%),
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Typically p” is much smaller than py (p° ~ 1 - 3% of py).

A good approx to mass cons eq! is obtained by neglecting p”:
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Can also write it as,

V- (poli) =0

These approx forms of mass cons are known as the anelastic
mass conservation eq? or deep convection mass cons eqn

- Commonly used in synoptic and mesoscale models + theories.
- Sound waves filtered out.

Incompressibility condn
Neglect all changes in density in mass cons eq®. Get:

V-i = 0| Incompressibility condition.




. 1 DoV _ . _ . :
SV Dt - 0O .. o0V = const .. volume is conserved

- appropriate approximation to mass cons eq® for liquids (oceans,
lakes) and for atmosphere if vertical motion is "small", i.e., if
vertical scale of motion is much less than vertical scale over
which p changes appreciably (e-folding height ~ 10km).

- incompressibility cond? also known as shallow convection
mass const eq. Used in mesoscale modelling + theories +
turbulence modelling. .

Two-dimensional incompressible flows

Consider hypothetical flow that is two-dimensional, u = u(x, y),

v =v(X,y), w =0 and incompressible, gu gv %VZV =0,

Since w=0 everywhere this becomes du/dx + dv/dy = 0 , which
is satisfied for u and v that satisfy:
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where  is a streamfunction. Proof:
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which cancels with first term
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Can write U= ——, v=——="— in vector form as: i = —k X Vv .
dy 0x

Graphically, this means:
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where 0A = 0xdy is horiz cross-sectional area of parcel.

So if du + g—v=0 thenL—D-—SA:O so then 0A = const.
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For 2-D incomp flows, u-% V= di’ and vertical vorticity is:
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Suppose we know ( everywhere and want to find u, v assuming
flow is 2-D and incompressible (as in early days of NWP). Get y
by solving

Vi 2y = — ¢, 20d order linear elliptic pde (Poisson eqn),

where the right hand side is a known function of x and y. Need
boundary cond®s to solve this eqn. Can specifiy y on bdry
(Dirichlet cond?) or normal derivative of W on bdry (Neumann
condn). Can mix and match from one bdry point to another --
but can't put both D and N cond®s on same point.

W or dy/dy specified \

y W or dW/dx
Y or dy/oX ) specified
l specified Viv = -§ -~
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X
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Solve Vhw = —C for y, (use SOR or other numerical technique)
then differentiate it to get u (= y/dy ) and v (= — JY/0x).



