METR 5113, Advanced Atmospheric Dynamics I Alan Shapiro, Instructor Friday 14 September 2018 (lecture 11)

Mass Conservation

Consider an infinitesimal fluid parcel of density ρ and volume δV . It's <u>mass</u> is unchanged no matter how it moves or deforms,

$$\rho \delta V = \text{const (for a parcel)}$$

So as δV^{\uparrow} , $\rho \downarrow$

$$\therefore \quad \frac{D(\rho \, \delta V)}{Dt} = 0$$

$$\rho \frac{D\delta V}{Dt} + \delta V \frac{D\rho}{Dt} = 0 \qquad \div \text{ by } \rho \, \delta V$$

(A)
$$\frac{1}{\delta V} \frac{D\delta V}{Dt} + \frac{1}{\rho} \frac{D\rho}{Dt} = 0$$

These are all equivalent Lagrangian expressions of mass consⁿ.

To get a hybrid Lagrangian/Eulerian form of mass consⁿ, apply $\frac{1}{\delta V} \frac{D\delta V}{Dt} = \frac{\partial u_i}{\partial x_i}$ in (A) to get:

(*)
$$\left[\frac{1}{\rho} \frac{D\rho}{Dt} + \frac{\partial u_i}{\partial x_i} = 0\right]$$
 or $\left[\frac{1}{\rho} \frac{D\rho}{Dt} + \nabla \cdot \vec{u} = 0\right]$

Eqn (*) is called the Mass Conservation eqn. [Also referred to

as "mass continuity eq^n " but that's a bad name for it -- mass is no more or less continuous than any other variable.]

Get a <u>purely Eulerian form</u> of mass conservation, by expressing Dp/Dt in (*) in Eulerian form.

(**)
$$\frac{\partial \rho}{\partial t} + \vec{\mathbf{u}} \cdot \nabla \rho + \rho \nabla \cdot \vec{\mathbf{u}} = 0$$

Combine last 2 terms to get "flux form" of mass consⁿ eqⁿ:

Eqns (**) and (***) are equivalent, purely Eulerian forms of mass consn.

All of the above eqns (Lag, Eulerian, or hybrid) are exact forms of mass consn -- no approximations made.

Some approximate forms of mass consⁿ

Let $\rho_0(z)$ be horiz average of ρ . Define perturbation density, ρ' :

Substitute $\rho = \rho_0 + \rho'$ into (**),

$$\frac{\partial \rho'}{\partial t} + \vec{\mathbf{u}} \cdot \nabla \rho' + \mathbf{w} \frac{d\rho_0}{dz} + (\rho' + \rho_0) \nabla \cdot \vec{\mathbf{u}} = 0$$

Typically ρ' is much smaller than ρ_0 ($\rho' \sim 1 - 3\%$ of ρ_0).

A good approx to mass cons eqn is obtained by neglecting ρ' :

$$w \frac{d\rho_0}{dz} + \rho_0 \nabla \cdot \vec{u} = 0$$

 \div by ρ_0 , get:

$$\nabla \cdot \vec{\mathbf{u}} + \mathbf{w} \frac{\mathrm{dln} \rho_0}{\mathrm{dz}} = 0$$

Can also write it as,

$$\nabla \cdot \left(\rho_0 \vec{\mathbf{u}} \right) = 0$$

These approx forms of mass cons are known as the <u>anelastic</u> mass conservation eqⁿ or <u>deep convection mass cons eqⁿ</u>

- Commonly used in synoptic and mesoscale models + theories.
- Sound waves filtered out.

<u>Incompressibility cond</u>ⁿ

Neglect <u>all changes</u> in density in mass cons eqⁿ. Get:

$$\nabla \cdot \vec{\mathbf{u}} = 0$$
 Incompressibility condition.

$$\therefore \frac{1}{\delta V} \frac{D\delta V}{Dt} = 0 \quad \therefore \quad \delta V = \text{const} \quad \therefore \quad \underline{\text{volume is conserved}}$$

- appropriate approximation to mass cons eqⁿ for liquids (oceans, lakes) and for atmosphere if vertical motion is "small", i.e., if vertical scale of motion is much less than vertical scale over which ρ changes appreciably (e-folding height $\sim 10 km$).
- incompressibility condⁿ also known as <u>shallow convection</u> $\underline{mass\ cons^n\ eq^n}$. Used in mesoscale modelling + theories + turbulence modelling.

Two-dimensional incompressible flows

Consider hypothetical flow that is <u>two-dimensional</u>, u = u(x, y), v = v(x, y), w = 0 and <u>incompressible</u>, $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$.

Since w=0 everywhere this becomes $\partial u/\partial x + \partial v/\partial y = 0$, which is satisfied for u and v that satisfy:

$$u = \frac{\partial \psi}{\partial y}, \qquad v = -\frac{\partial \psi}{\partial x},$$

where ψ is a streamfunction. Proof:

$$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial \mathbf{v}}{\partial \mathbf{y}} = \frac{\partial^2 \mathbf{\psi}}{\partial \mathbf{x} \partial \mathbf{y}} - \boxed{\frac{\partial^2 \mathbf{\psi}}{\partial \mathbf{y} \partial \mathbf{x}}} = 0$$

interchange order of differentiation, get $\frac{\partial^2 \psi}{\partial x \partial y}$, which cancels with first term

Can write $u = \frac{\partial \psi}{\partial y}$, $v = -\frac{\partial \psi}{\partial x}$ in vector form as: $\vec{u} = -\hat{k} \times \nabla \psi$. Graphically, this means:

So, in 2D incomp flows, curves of constant ψ are streamlines!

Note: Since
$$\frac{1}{\delta x} \frac{D\delta x}{Dt} = \frac{\partial u}{\partial x}$$
 and $\frac{1}{\delta y} \frac{D\delta y}{Dt} = \frac{\partial v}{\partial y}$,

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = \frac{1}{\delta x} \frac{D\delta x}{Dt} + \frac{1}{\delta y} \frac{D\delta y}{Dt} = \frac{1}{\delta x \delta y} \frac{D(\delta x \delta y)}{Dt} = \frac{1}{\delta A} \frac{D\delta A}{Dt} ,$$

where $\delta A \equiv \delta x \delta y$ is horiz cross-sectional area of parcel.

So if $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$ then $\frac{1}{\delta A} \frac{D\delta A}{Dt} = 0$ so then $\delta A = \text{const.}$

: Horiz area of parcels doesn't change in 2D incomp flows.

For 2-D incomp flows, $u = \frac{\partial \psi}{\partial y}$, $v = -\frac{\partial \psi}{\partial x}$, and vertical vorticity is:

$$\zeta \equiv \hat{\mathbf{k}} \cdot (\nabla \times \vec{\mathbf{u}}) = \frac{\partial \mathbf{v}}{\partial \mathbf{x}} - \frac{\partial \mathbf{u}}{\partial \mathbf{y}} = -\frac{\partial^2 \psi}{\partial \mathbf{x}^2} - \frac{\partial^2 \psi}{\partial \mathbf{y}^2} = -\nabla_h^2 \psi$$

Suppose we know ζ everywhere and want to find u, v assuming flow is 2-D and incompressible (as in early days of NWP). Get ψ by solving

$$\nabla_h^2 \psi = -\zeta$$
, 2nd order linear elliptic pde (Poisson eqⁿ),

where the right hand side is a known function of x and y. Need boundary cond^{ns} to solve this eqn. Can specify ψ on bdry (Dirichlet condⁿ) or normal derivative of ψ on bdry (Neumann condⁿ). Can mix and match from one bdry point to another --but can't put both D and N cond^{ns} on same point.

Solve $\nabla_h^2 \psi = -\zeta$ for ψ , (use SOR or other numerical technique) then differentiate it to get $u = \partial \psi / \partial y$ and $v = \partial \psi / \partial x$.