METR 5113, Advanced Atmospheric Dynamics I Alan Shapiro, Instructor Monday, 17 September 2018 (lecture 12)

- 4 handouts: answers to prob set 2, vort and div in cylindrical coords, Laplacian in cylindrical coords, Stokes streamfunction and reg streamfunction

2-D Incompressible flows (continued)

Consider a streamline drawn in a 2-D incomp flow.

dx, dy are increments along a streamline.

So differential eqn for this streamline is: $\frac{dx}{u} = \frac{dy}{v}$ along streamline. Plug in expressions for u,v in terms of ψ

$$\frac{dx}{\partial \psi} = \frac{dy}{-\frac{\partial \psi}{\partial x}}$$
 along streamline Cross multiply and rearrange to get:

$$\frac{\partial \psi}{\partial x} dx + \frac{\partial \psi}{\partial y} dy = 0 \quad \text{along streamline}$$

[____ $d\psi$ ____] Left hand side of this eqn is $d\psi$ expanded with chain rule

$$\therefore d\psi = 0$$
 along streamline

$$\therefore \psi = const$$
 (along streamline)

Streamlines <u>always</u> exist (2-D/3-D, compressible/incomp flows) but a streamfunction ψ defined by $u = \partial \psi/\partial y$, $v = -\partial \psi/\partial x$ only

exists for 2-D incomp flows.

In 2D incomp flows, winds are tangent to lines of constant ψ and large gradients of ψ imply strong winds:

Sometimes it's convenient to work in cylindrical polar coords. We will relate <u>radial</u> and <u>azimuthal</u> velocity components to ψ .

 \hat{r} is unit vector in dirⁿ of r increasing $\hat{\theta}$ is unit vector in dirⁿ of θ increasing $v_r \equiv \hat{r} \cdot \vec{u}$ radial velocity comp $v_{\theta} \equiv \hat{\theta} \cdot \vec{u}$ azimuthal (tangential) velocity comp $x = r \cos \theta$, $y = r \sin \theta$ $\therefore r^2 = x^2 + y^2$ $\tan \theta = y/x$ $\therefore \theta = \tan^{-1}(y/x)$

$$\psi(x, y) = \psi[x(r, \theta), y(r, \theta)]$$

Can relate radial and azimuthal derivs of ψ to azimuthal and radial velocity comps (analogous to $u=\partial\psi/\partial y$, $v=-\partial\psi/\partial x$):

Calculate radial and azimuthal derivatives of ψ :

$$\frac{\partial \psi}{\partial r} = \frac{\partial \psi}{\partial r} \Big|_{\theta} = \frac{\partial \psi}{\partial x} \Big|_{y} \frac{\partial x}{\partial r} \Big|_{\theta} + \frac{\partial \psi}{\partial y} \Big|_{x} \frac{\partial y}{\partial r} \Big|_{\theta} \quad \text{(chain rule)}$$

$$= -v \cos\theta + u \sin\theta$$

$$\frac{\partial \psi}{\partial \theta} = (\text{show work}) = v r \sin\theta + u r \cos\theta$$

Obtain similar-looking expressions for v_r and v_θ :

$$v_{r} = \hat{\mathbf{r}} \cdot \vec{\mathbf{u}} = \hat{\mathbf{r}} \cdot (\mathbf{u} \hat{\mathbf{i}} + \mathbf{v} \hat{\mathbf{j}}) = \mathbf{u} \cos\theta + \mathbf{v} \cos(90 - \theta)$$

$$= \mathbf{u} \cos\theta + \mathbf{v} (\cos 90 \cos\theta + \sin 90 \sin\theta)$$

$$= \mathbf{u} \cos\theta + \mathbf{v} \sin\theta$$

$$\mathbf{v}_{\theta} = \hat{\theta} \cdot \vec{\mathbf{u}} = (\text{show work}) = -\mathbf{u} \sin \theta + \mathbf{v} \cos \theta$$

$$\therefore \text{ can see that: } \mathbf{v}_{r} = \frac{1}{r} \frac{\partial \psi}{\partial \theta} \qquad \mathbf{v}_{\theta} = -\frac{\partial \psi}{\partial r}$$

In cyl coords, vert vort is:
$$\zeta = \frac{1}{r} \frac{\partial (rv_{\theta})}{\partial r} - \frac{1}{r} \frac{\partial v_{r}}{\partial \theta}$$
 (see handout)

Examples of simple 2-D incomp flows

(1) $\psi = U y$ where U is const

$$\therefore \mathbf{u} = \frac{\partial \mathbf{\Psi}}{\partial \mathbf{y}} = \mathbf{U}$$

$$v = -\frac{\partial \psi}{\partial x} = 0$$

- $\vec{u} = U \hat{i}$ const, unidirectional flow
- (2) $\psi = U y + D$ where U and D are const.

Get same flow as above,
$$u = \frac{\partial \psi}{\partial y} = U$$
, $v = -\frac{\partial \psi}{\partial x} = 0$

(3) $\psi = -\frac{K}{2}r^2$ where K is a const.

$$v_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta} = 0$$

$$v_{\theta} = -\frac{\partial \psi}{\partial r} = -\left(-\frac{K}{2} 2 r\right) = Kr$$

$$\therefore \vec{\mathbf{u}} = \mathbf{Kr} \, \hat{\boldsymbol{\theta}}$$

ang velocity $\Omega \equiv \frac{v_{\theta}}{r} = K$ so ang velocity is const.

Flow is a solid body vortex. (like planet or a record player)

vert vorticity:
$$\zeta = \frac{1}{r} \frac{\partial (rv_{\theta})}{\partial r} - \frac{1}{r} \frac{\partial v_{r}}{\partial \theta} = \frac{1}{r} \frac{\partial (Kr^{2})}{\partial r} = 2K$$

(4) $\psi = \frac{Q}{2\pi} \theta$ where Q is const.

$$\therefore v_{\rm r} = \frac{1}{r} \frac{\partial \psi}{\partial \theta} = \frac{Q}{2\pi r}, \qquad v_{\theta} = -\frac{\partial \psi}{\partial r} = 0$$

radial flow only (inflow if Q < 0, outflow if Q > 0)

$$\therefore \vec{u} = \frac{Q}{2\pi r} \hat{r}$$

The closer to the origin, the faster the radial velocity. $v_r \to \infty$ as $r \to 0$.

In horiz plane it looks like:

A <u>line source</u> for Q > 0, a <u>line sink</u> for Q < 0 (arrows reversed on above diagram). The "line" is the z-axis.

Can show that $\zeta = 0$ for this case.

Note: ψ is multivalued (on positive x axis $\psi = 0$ and Q. Be careful - do not differentiate ψ across positive x axis).

(5) vr-vortex

$$\Psi = -\frac{\Gamma}{2\pi} \ln r$$

$$v_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta} = 0$$
 no radial wind

$$v_{\theta} = -\frac{\partial \psi}{\partial r} = \frac{\Gamma}{2\pi r}$$

 $\mathbf{r} \quad \mathbf{v}_{\theta}$ is infinite at $\mathbf{r} = 0$.

Angular velocity $\frac{v_{\theta}}{r}$ is $\frac{\Gamma}{2\pi r^2}$ -- it decreases with radius.

Angular momentum $v_{\theta}r$ is $\frac{\Gamma}{2\pi}$ -- a constant

Vert vorticity $\zeta = \frac{1}{r} \frac{\partial (rv_{\theta})}{\partial r} - \frac{1}{r} \frac{\partial v_r}{\partial \theta} = \frac{1}{r} \frac{\partial}{\partial r} \frac{\Gamma}{2\pi} = 0$ [except at r = 0; \div by 0 is illegal]. Using Stokes th^m, can show $\zeta = \infty$ at r = 0 [try it]. So vr-vortex is an irrotational vortex (except at origin).

(6) Rankine Vortex: Solid body vortex in inner region "patched" to vr vortex in outer region.

