METR 5113, Advanced Atmospheric Dynamics I
Alan Shapiro, Instructor
Monday, 17 September 2018 (lecture 12)

- 4 handouts: answers to prob set 2, vort and div in cylindrical
coords, Laplacian in cylindrical coords, Stokes streamfunction
and reg streamfunction

2-D Incompressible flows (continued)

Consider a streamline drawn in a 2-D incomp flow.
d
W
dx _dy
u

So differential eqn for this streamline is: ~ along
streamline. Plug in expressions for u,v in terms of

dx, dy are increments along a streamline.

dx _ dy - .
= along streamline Cross multiply and rearrange to get:
dy 9y
ady 0x
0 0 :
W gx + -\Edy =0 along streamline
ox dy
[ dy ]  Left hand side of this eqn is dy expanded with chain rule

sody =0 along streamline
. Y = const (along streamline)

Streamlines always exist (2-D/3-D, compressible/incomp flows)
but a streamfunction y defined by u = dy/dy , v =—dy/ox only



exists for 2-D incomp flows.

In 2D incomp flows, winds are tangent to lines of constant y
and large gradients of y imply strong winds:

3
y=2

v

\
<

—

Sometimes it's convenient to work in cylindrical polar coords.
We will relate radial and azimuthal velocity components to V.

A

T is unit vector in dir? of r increasing

0 is unit vector in dir? of 0 increasing

v, = T-U radial velocity comp

Vg = 6.1 azimuthal (tangential) velocity comp
X =rcosB, y=rsin0

sor? = x2 4+ y?

tan0 = y/x 5. 0 = tan” L(y/x)



Y(x,y) = Y[x(r,8),y(r, 0)]

Can relate radial and azimuthal derivs of y to azimuthal and
radial velocity comps (analogous to U = dy/dy , v =— y/ox ):

Calculate radial and azimuthal derivatives of y:

o0x oy | dy

0 0 0 -
Vv _ 9yl _ Wygf9+—5}7xﬁe (chain rule)

o ~ orlg  0x

holding © const

= —vcosO + usin0O

oy
0

= (show work) = vrsin® + urcosO

Obtain similar-looking expressions for v, and vg:

v,=f-1=7-(ui+vj)=ucosd + vcos(90-0)

= ucosB + v (cos90 cosO + sin90 sinb)
0 1

= ucos® + vsin0

Vg = 6-d = (show work) = —usin® + v cosd
0
.. can see that: vV, = %3%{ Vg = _T;l_’

o o)
In cyl coords, vert vortis: G = % (g\;e) — %‘8\(]; (see handout)




Examples of simple 2-D incomp flows

(1) v =Uy where U is const

_ oy _
u—a—y~—U
_ oy _
V—-——a‘)‘{-—O
y > =3
> y=2
l > y=1
X > y=0

- u=Ui const, unidirectional flow

(2) v =Uy+D where U and D are const.
oy _

Get same flow as above, u = Iy =U, v= o = 0

(3) w=—%r2 where K is a const.
_ 19y _
Vr—-T—a‘“é———O
d K
Ve——%z-—(—?Zr):Kr



an)

U= Kr
. \ e
ang velocity = —1;9 = K so0 ang velocity 1s const.

Flow is a solid body vortex. (like planet or a record player)
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vert vorticity: § = %—a%\rl—e) - %%I. - %8(Kr )

= 2K

-

4) vy = —2%6 where Q is const.
L, - 19v _ Q _ oy _
VT Tae T V6T "o~V

radial flow only (inflow if Q <0, outflow if Q > 0)
o Q

" 2’
The closer to the origin, the faster the radial velocity. v, —> e as
r—0.
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In horiz plane it looks like:

S 0=m/2 —
y ForQ>0[ =4 oo
0=0.. =
L X - > V=0
: 0=2n .. y=Q
\J
0 =3m/2
soy=3Q/4

A line source for Q > 0, a line sink for Q < 0 (arrows reversed
on above diagram). The "line" is the z-axis.

Can show that = 0 for this case.

Note: W is multivalued (on positive x axis Yy =0 and Q. Be
careful - do not differentiate y across positive x axis).

(5) vr-vortex

- _I
Y = 2Tclnr

v, = %%‘g = 0 no radial wind
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vz Y _ T |
0 or ~ 2mr

r Vgisinfiniteatr=0.

Vo . T

Angular velocity +- 18 2 it decreases with radius.

Angular momentum vgr is —21—;5 -- a constant

o(rv d
Vert vorticity § = llr (are) - % a\g = }.aarzl; =0 [except at r=0;

+ by 0 is illegal]. Using Stokes th™, can show {=oc0 at r=0 [try
it]. So vr-vortex is an irrotational vortex (except at origin).

(6) Rankine Vortex: Solid body vortex in inner region
. y Y g
"patched" to vr vortex in outer region.

Vo G




