METR 5113, Advanced Atmospheric Dynamics I Alan Shapiro, Instructor Friday, 21 September 2018 (lecture 14)

- 2 handouts: a test for tensor character, alternate derivation of Cauchy's eqn of motion

Forces (continued)

At same point P consider an area element $dA \perp to x_3$ axis (dif orientation)

 \vec{F}_3 is force exerted across dA <u>by fluid pierced by</u> \hat{e}_3 <u>on fluid on other side</u>. $-\vec{F}_3$ is force exerted across dA by fluid pierced by $-\hat{e}_3$ on fluid on other side.

 \vec{F}_3 doesn't have to equal \vec{F}_1 even though both are evaluated at same location and time w/ same sized dA (dif orientation of dA)

For force on the i'th face:

$$\vec{F}_{i} = (\tau_{i1} \hat{e}_{1} + \tau_{i2} \hat{e}_{2} + \tau_{i3} \hat{e}_{3}) dA$$

$$\vec{F}_i = \tau_{ij} \, \hat{e}_j \, dA$$

force on i'th face, not i-comp of a force

 τ_{ij} is j-comp of the stress acting on i'th face (face \perp to x_i) following convention above (fluid pierced by \hat{e}_i is do-er).

- Can prove that τ is a 2nd order tensor (stress tensor)
- Can prove that τ is symmetric $\tau_{ij} = \tau_{ji}$. [for proofs, see Batchelor's "intro to fluid dynamics" along with my handout on a special test for tensor character]

What is the stress force on an area element dA with <u>arbitrary</u> orientation? Let \hat{n} be unit vector \perp to sfc. Introduce new (rotated) coord system s.t. \hat{e}'_1 axis is aligned with \hat{n} .

So stress force on this \hat{e}'_1 - oriented element is:

$$\vec{F}_n = \vec{F}_{1'} = \tau'_{1j} \hat{e}'_j dA$$
 (comps in new rotated coord system)

Can rewrite it in vector form:

$$\vec{F}_n = \tau'_{1j} \hat{e}'_j dA$$
 (now use tensor transformation law)

$$= C_{k1} C_{mj} \tau_{km} \hat{e}'_j dA \qquad \text{(now use } C_{mj} \hat{e}'_j = \hat{e}_m \text{)}$$

$$= C_{k1} \tau_{km} \hat{e}_m dA$$

now use:
$$C_{k1} = \hat{e}_k \cdot \hat{e}'_1 = \hat{e}_k \cdot \hat{n} = n_k$$

So
$$\vec{F}_n = \tau_{km} n_k \hat{e}_m dA$$

$$= \tau_{mk} n_k \hat{e}_m dA \qquad \text{(from symmetry of } \tau\text{)}$$

$$= (\tau \cdot \hat{n})_m \hat{e}_m dA$$

so $\vec{F}_n = \tau \cdot \hat{n} dA$ stress force on area element w/ normal \hat{n} .

or: $\vec{F} = \tau \cdot \hat{n} dA$ (leave off subscript n with understanding that \vec{F} is still the force on face with normal \hat{n})

Conservation of Momentum [misnomer -- parcel momentum can change]

Newton's 2nd law for a solid particle:

$$\vec{F} = m \vec{a} = m \frac{D\vec{u}}{Dt} = \frac{D(m\vec{u})}{Dt}$$

sum of forces
on a particle rate of change
of momentum

So
$$\frac{D(m\vec{u})}{Dt} = \vec{F}$$
.

Extend it to a fluid blob (not necessarily tiny) w/ mass $\int_{V(t)} \rho dV$

$$\frac{D}{Dt} \int_{V(t)} \rho \vec{u} \, dV = \int_{V(t)} \rho \vec{g} \, dV + \int_{A(t)} \tau \cdot \hat{n} \, dA$$
rate of change of body force stress forces total momentum

In components:

$$\frac{D}{Dt} \int_{V(t)} \rho u_i \, dV = \int_{V(t)} \rho g_i \, dV + \int_{A(t)} \tau_{ij} \, n_j \, dA$$

After applying Gauss th^m to the last term:

$$\frac{D}{Dt} \int_{V(t)} \rho u_i \, dV = \int_{V(t)} \left(\rho g_i + \frac{\partial \tau_{ij}}{\partial x_j} \right) dV$$

This is an integral form of momentum conservation.

Recall that for a material volume:

$$\frac{D}{Dt} \int_{V(t)} \rho u_i \, dV = \int_{V(t)} \rho \, \frac{Du_i}{Dt} \, dV$$

So momentum conservation eqn becomes

$$\therefore \int_{V(t)} \left(\rho \frac{Du_i}{Dt} - \rho g_i - \frac{\partial \tau_{ij}}{\partial x_j} \right) dV = 0$$

Now use <u>DuBois-Reymond lemma</u>: If $\int_{V(t)} (\cdot) dV = 0$ for <u>arbitrary</u> V(t) then () must be 0 <u>everywhere</u>.

$$\therefore \quad \rho \frac{Du_i}{Dt} - \rho g_i - \frac{\partial \tau_{ij}}{\partial x_j} = 0, \quad \text{or,}$$

$$\rho \frac{Du_i}{Dt} = \rho g_i + \frac{\partial \tau_{ij}}{\partial x_j} \quad \underline{\text{Cauchy's eq}_{\underline{n}} \text{ of motion}}$$

- it's a differential form of momentum conservation.

[See handout for a different derivation of Cauchy's eqn]

Cauchy's eqⁿ is underdetermined (more unknowns than eq^{ns}): 3 eq^{ns} in 9 unknowns (3 for u_i , and 6 for τ_{ij}). To solve for u_i , must close the system. Want to relate τ_{ij} to <u>local flow conditions</u>.