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Boussinesq Approximation (really 3 different approx)

Real flows are not incompressible, but can be "almost" incomp:

D . Dp .
An exact form of mass cons: %—I—)% +V.-i=0. If %ﬁ% 1s small
v = . e 1DP du dv dw
compared to terms in V-1 ,i.e.,if oDt << max(ax,ay, 5 ) ,

then a good approximation to mass const eqiis V-i=0.

If you make this approximation then you can't return to exact
mass cons? eq? to deduce Dp/Dt =0 . No double-dipping! Use

exact eq" or approx eq® but not both (true for any eq? and its
approx). [However, if you approximate 1st Law of Thermo as
Dp/Dt=0, then you can use both Dp/Dt=0 and V-i =0 --as

in our upcoming work w/ gravity waves.|

Boussinesq Approx 1: V-1 = 0 is our mass cons eqn.

Boussinesq Approx 2: material properties [, cp held const.

With these two approximations, the N.S. eqns become:
p%‘_tj = - Vp - pgk + V2

Now define base-state pressure based on constant density pg (ref



atmosphere has const density). Sop =po+p'. Thenp=p +p’
where P is solution of dp/dz =—-p,g. The NS eqns become:

cancellation

p0+p) U__Vp'[-Vp||—pogk|-p'gk + UV +byp,, get:
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1 + 05! Dt = pOVp png+vVu
p'is in inertia term 1+p— Du .nd in gravity term Eg If
Po /Dt Po®"
pV !

Po << 1, can safely neglect -pp—o compared to 1. In this case
p|

can omit Po in inertia term but not in gravity term. So we get:
Boussinesq Approx 3: Density is allowed to vary in gravity term

but not in inertia term. (i.e.,p' is neglected in inertia term).

So in the Boussinesq approx, the NS equations reduce to

Di __ 1y, _ P ¢ 2~
Dt = pOVp pogk+vV (il

Exact Solutions of the Incompressible Navier-Stokes eqns
(in Kundu; Ch 9 of first-fourth ed, Ch8 of 5th ed)

Rare because of non-linearity. Only get sols for special cases
(usually when nonlinear terms vanish) -- and for laminar flow.
The solns are valuable because they show how eqns (our proxy
for nature) behave in simple circumstances. Also useful for
numerical code validation.



e¢.g. Planar Poiseuille flow

Unidirectional flow btw 2 infinite parallel plates forced by a
pressure gradient force. The plates are stationary. Assume flow

is incompressible and p is const. Assume flow is in a steady-
state. Seek solutions of the form: u=u(y), v=0, w=0.
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Need to impose impermeability cond® at plates: no flow normal
to plates. Automatically satisfied in this case:

- at bottom plate v(0) =0 (satisfied since v = 0 everywhere)

-at top p]ate V(2b) = 0. (n " " " )

Apply no-slip condition at plates: no flow tangential to plates --
fluid sticks to plates [appropriate at solid bdry in a viscous flow].

No-slip on w is automatically satisfied since w = 0 everywhere.
No-slip for u: u(0) =0, u(2b) = 0 [sol for u must satisfy these]

Incompressibility cond®:

Ju , dv , ow _
ox Toy Tor 7Y
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since u=u(y) v=0 w=0

- 0=0 good, it's satisfied



N.S. eqns (for incomp flow):

Du _ —le ~ ¢k + VWA

Dt Y
. Di _ _lyy _ P ¢ 2
or: Dt = pr pgk+VVu

but density is assumed to be constant (so p* = 0) so

Di _ _ lyy 25
Dt = pr + vV~

Look at the three components of this eqn.
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x-comp: U = -5~ +V y2 (balance btw pgf and friction)

y-comp: 0=- —é— ‘% — p' = f(X,Z) at most a f1 of x and z



!

Z-comp: 0= —%% — p' = hX,y) atmostafd of xand y

Since f(x,z) = h(x,y), must have f(x, z) = {(x), h(x, y) = h(x)
(only x dependence). So p'=p'(x), and x-comp NS eq" becomes

1 d*u
p dy2

at most a f* of x since u = u(y), this is at most a f" of y

dp'
0 "a—;(— + \Y%

The only way these terms can balance is if they're both constant.
So dp'/dx is a const. Call it K (K=dp'/dx) .

2
gyg = gi, integrate w.r.t. y, get:
du _ K

= =y + C i i ,
dy Y y T integrate again, get
const of integration
K y*

uzp—v~2~+Cy+IB.

another const of integration

Apply no-slip b.c. for u on lower plate:
u0 =0 - 0=04+0+D .. [D=0]
Apply no-slip b.c. for u on upper plate:

2
w2y =0-0=KE" cop+p . jc=-Kb




u= g5y (2 - by) a parabolic profile
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Verify that u is max at centerline. Define y,« by: v

g %%(y—b)‘ =0 f Y =b

y max

Calculate the maximum value of u:

2 2 2
y b Kb
Umax = WY max) = g%( m2ax _meax) = g%( ) _bz) -~ 2pV

If K <0 (dp/dx < 0) thenu_.. > 0 (flow from high p' toward
low p').



