METR 5113, Advanced Atmospheric Dynamics I Alan Shapiro, Instructor Friday, 28 September 2018 (lecture 17)

Boussinesq Approximation (really 3 different approx)

Real flows are not incompressible, but can be "almost" incomp:

An exact form of mass cons: $\frac{1}{\rho}\frac{D\rho}{Dt} + \nabla \cdot \vec{u} = 0$. If $\frac{1}{\rho}\frac{D\rho}{Dt}$ is small compared to terms in $\nabla \cdot \vec{u}$, i.e., if $\frac{1}{\rho}\frac{D\rho}{Dt} << max \left(\frac{\partial u}{\partial x}, \frac{\partial v}{\partial y}, \frac{\partial w}{\partial z}\right)$, then a good approximation to mass consⁿ eqⁿ is $\nabla \cdot \vec{u} = 0$.

If you make this approximation then you <u>can't</u> return to exact mass consⁿ eqⁿ to deduce $D\rho/Dt=0$. No double-dipping! Use <u>exact eq^n</u> or <u>approx eq^n</u> but <u>not both</u> (true for any eq^n and its approx). [However, if you approximate 1st Law of Thermo as $D\rho/Dt=0$, then you can use both $D\rho/Dt=0$ and $\nabla \cdot \vec{u}=0$ -- as in our upcoming work w/ gravity waves.]

Boussinesq Approx 1: $\nabla \cdot \vec{\mathbf{u}} = 0$ is our mass cons eqn.

Boussinesq Approx 2: material properties μ , c_p held const.

With these two approximations, the N.S. eqns become:

$$\rho \, \frac{D\vec{u}}{Dt} = - \, \nabla p \, - \, \rho g \, \hat{k} \, + \, \mu \, \nabla^2 \vec{u}$$

Now define base-state pressure based on constant density ρ_0 (ref

atmosphere has const density). So $\rho = \rho_0 + \rho'$. Then $p = \bar{p} + p'$ where \bar{p} is solution of $d\bar{p}/dz = -\rho_0 g$. The NS eqns become:

$$\begin{split} &\left(\rho_{0}+\rho'\right) \frac{D\vec{u}}{Dt} = -\nabla p' \left[-\nabla \bar{p} \right] \left[-\rho_{0}g\hat{k} \right] - \rho'g\hat{k} + \mu \nabla^{2}\vec{u} & \div \text{ by } \rho_{0} \text{ , get:} \\ &\left(1 + \frac{\rho'}{\rho_{0}}\right) \frac{D\vec{u}}{Dt} = -\frac{1}{\rho_{0}} \nabla p' - \frac{\rho'}{\rho_{0}}g\,\hat{k} + \nu \,\nabla^{2}\vec{u} \end{split}$$

 ρ' is in inertia term $\left(1 + \frac{\rho'}{\rho_0}\right) \frac{D\vec{u}}{Dt}$ and in gravity term $\frac{\rho'}{\rho_0} g$. If $\frac{\rho'}{\rho_0} << 1$, can safely neglect $\frac{\rho'}{\rho_0}$ compared to 1. In this case can omit $\frac{\rho'}{\rho_0}$ in inertia term but not in gravity term. So we get:

Boussinesq Approx 3: Density is allowed to vary in gravity term but not in inertia term. (i.e., ρ' is neglected in inertia term).

So in the Boussinesq approx, the NS equations reduce to

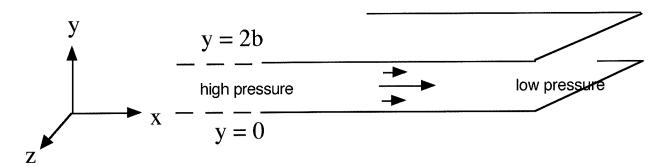
$$\frac{D\vec{u}}{Dt} \,=\, -\,\frac{1}{\rho_0}\,\nabla p'\,-\,\frac{\rho'}{\rho_0}\,g\,\,\hat{k}\,\,+\,\nu\,\nabla^2\vec{u}$$

Exact Solutions of the Incompressible Navier-Stokes eqns (in Kundu; Ch 9 of first-fourth ed, Ch8 of 5th ed)

Rare because of non-linearity. Only get solns for special cases (usually when nonlinear terms vanish) -- and for <u>laminar flow</u>. The solns are valuable because they show how eqns (our proxy for nature) behave in simple circumstances. Also useful for numerical code validation.

e.g. Planar Poiseuille flow

Unidirectional flow btw 2 infinite parallel plates forced by a pressure gradient force. The plates are stationary. Assume flow is <u>incompressible and ρ is const.</u> Assume flow is in a <u>steady-state</u>. Seek solutions of the form: u = u(y), v = 0, w = 0.



Need to impose <u>impermeability cond</u>ⁿ <u>at plates</u>: no flow <u>normal</u> to plates. Automatically satisfied in this case:

- at bottom plate v(0) = 0 (satisfied since v = 0 everywhere)

- at top plate
$$v(2b) = 0$$
. (" " ")

Apply <u>no-slip condition</u> at plates: no flow <u>tangential</u> to plates -- fluid sticks to plates [appropriate at solid bdry in a viscous flow].

No-slip on w is automatically satisfied since w = 0 everywhere. No-slip for u: u(0) = 0, u(2b) = 0 [solⁿ for u must satisfy these]

Incompressibility condn:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

$$0 \qquad 0 \qquad 0$$
since $u=u(y) \quad v=0 \quad w=0$

 \therefore 0 = 0 good, it's satisfied

N.S. eq^{ns} (for incomp flow):

$$\frac{D\vec{u}}{Dt} = -\frac{1}{\rho} \nabla p - g \hat{k} + \nu \nabla^2 \vec{u}$$

or:
$$\frac{D\vec{u}}{Dt} = -\frac{1}{\rho}\nabla p' - \frac{\rho'}{\rho}g\hat{k} + \nu\nabla^2\vec{u}$$

but density is assumed to be constant (so $\rho' = 0$) so

$$\frac{\mathrm{D}\vec{\mathrm{u}}}{\mathrm{D}t} \, = \, - \, \frac{1}{\rho} \nabla p' \, + \, \nu \nabla^2 \vec{\mathrm{u}}$$

Look at the three components of this eqn.

y-comp:
$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = -\frac{1}{\rho} \frac{\partial p'}{\partial y} + v \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right)$$
z-comp:
$$\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} = -\frac{1}{\rho} \frac{\partial p'}{\partial z} + v \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right)$$

$$0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

x-comp:
$$0 = -\frac{1}{\rho} \frac{\partial p'}{\partial x} + v \frac{d^2u}{dy^2}$$
 (balance btw pgf and friction)

y-comp:
$$0 = -\frac{1}{\rho} \frac{\partial p'}{\partial y} \rightarrow p' = f(x,z)$$
 at most a fⁿ of x and z

z-comp:
$$0 = -\frac{1}{\rho} \frac{\partial p'}{\partial z} \rightarrow p' = h(x, y)$$
 at most a f^n of x and y

Since f(x,z) = h(x,y), must have f(x,z) = f(x), h(x,y) = h(x) (only x dependence). So p'=p'(x), and x-comp NS eqn becomes

$$0 = -\frac{1}{\rho} \frac{dp'}{dx} + v \frac{d^2u}{dy^2}$$
at most a fⁿ of x since u = u(y), this is at most a fⁿ of y

The only way these terms can balance is if they're both <u>constant</u>. So dp'/dx is a const. Call it K ($K \equiv dp'/dx$).

$$\therefore \frac{d^2u}{dy^2} = \frac{K}{\rho v} \qquad \text{integrate w.r.t. y, get:}$$

$$\frac{du}{dy} = \frac{K}{\rho v}y + C, \quad \text{integrate again, get:}$$

$$\text{const of integration}$$

$$u = \frac{K}{\rho \nu} \frac{y^2}{2} + C y + D.$$

another const of integration

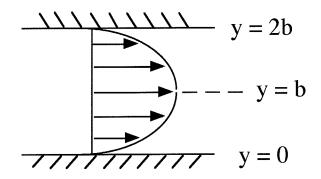
Apply no-slip b.c. for u on lower plate:

$$u(0) = 0 \rightarrow 0 = 0 + 0 + D \quad \therefore \quad \boxed{D = 0}$$

Apply no-slip b.c. for u on upper plate:

$$u(2b) = 0 \rightarrow 0 = \frac{K}{\rho v} \frac{(2b)^2}{2} + C(2b) + D$$
 : $C = -\frac{Kb}{\rho v}$

$$u = \frac{K}{\rho v} \left(\frac{y^2}{2} - by \right)$$
 a parabolic profile



Verify that u is max at centerline. Define y_{max} by: $\frac{du}{dy}\Big|_{y_{\text{max}}} = 0$.

$$\therefore \frac{K}{\rho v} (y - b) \Big|_{y_{\text{max}}} = 0 \qquad \therefore y_{\text{max}} = b$$

Calculate the maximum value of u:

$$u_{max} = u(y_{max}) = \frac{K}{\rho v} \left(\frac{y_{max}^2}{2} - by_{max} \right) = \frac{K}{\rho v} \left(\frac{b^2}{2} - b^2 \right) = -\frac{Kb^2}{2\rho v}$$

If K < 0 (dp'/dx < 0) then $u_{max} > 0$ (flow from high p' toward low p').