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Exact solutions of incompressible Navier-Stokes eq?s (contd)

Planar Couette Flow

[Ask students to go through this Couette analysis themselves]

Again consider steady flow btw 2 infinite parallel plates. This
time suppose there is no pgf but the top plate is moving with

velocity Ui . As before, assume 2-D flow u=u(y),v=0,w =0.
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Impermeability cond®: v(0) =0, v(2b) = 0. Automatically
satisfied since v = 0 everywhere.

No-slip cond® on w: w(0) = 0, w(2b) = 0. Automatically
satisfied since w = 0 everywhere.

No slip cond® on u: u(0) =0  (fluid sticks to stationary plate)
u(2b) = U (fluid sticks to moving plate)
We'll enforce these conditions later.

Can show that incomp cond? is satisfied everywhere (get 0 = 0).
Write down N.S. eqns and slaughter terms like before but now all
pef terms are O (flow driven by moving plate, not pgf). Get:



x-comp NS eql: Vv diu _

dy?
y-comp NS eql: 0=20
z-comp NS eql: 0=20

int. Xx-comp eq® w.r.t. y, get

du i i
&y = C, int again w.r.t.y, get
u = Cy + D

Apply no-slip condition on u on lower plate:

u0)=0 - 0=0+D ..[D=0]

Apply no-slip condition on u on upper plate:

u2b) = U — U=C2b+D . c:%
0
u = —2% y | linear profile
» —y=2b

77777777777~ ¥ =0



Combination Planar Poiseuille/Couette flow

Get a soln for flow due to boundary translation and imposed pgf
[You’re invited to zperty fill in the details.]
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u=%y+—p—\7 —z——bY), v=0, w=0

[for picture, see Kundu, Fig. 9.4 (eds. 1-4), or Fig. 8.4 (5th ed.)]

N.S. eqgns in cylindrical coords

y4A . X =1 cosO
r y =rsind
> X z 1 to xy plane

Cartesian Cylindrical
X,Y,Z 1,0,z (r: radial, ©: azimuthal)
u,v,w u,, ug,u, or call them u, v, w (not Cartesian!)

r comp NS eq™:

'aT+u8r+1’ae+Waz_ —r2§§_r2

du , du, vou du VTZ_ 19p +V(V2u 2 ov u)

0-comp NS eqm™
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z-comp NS eq™:
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2_1290
where V _Tm(rm)+;§aez+822

Incomp cond?:

Poiseuille flow

Consider steady unidirectional pressure-driven flow in a pipe of
circular cross-section.

Use cylindrical coords. Put z-axis down center of pipe. Let pipe
radius be a.

rzt)zan\ —> Z
\

Assume unidirectional flow such that:

i=wk, u=0, v=0
(no radial flow) (no azimuthal flow)

Also assume flow is symmetric about pipe axis and indep of
downstream direction z. .. w = w(r)



Impermeability condition: flow component normal to pipe should
be 0 (on pipe), i.e., u(a) =0. It's satisfied since u =0 everywhere.

No-slip condition on pipe surface (involves v and w):
v(a) = 0 satisfied since v=0 everywhere
w(a) = 0 ... need to return to this one later.

.14 1 ov , ow _
Incomp cond™  + 5- (r u) *T3%0 T oz T 0
0 0 0
since u =0 v=0 windep of z

get: 0+0+0=0. okee

N.S. eqns for this case reduce to:

ap' ,
r comp: Oz—[—g—ﬂg—;— — p' = 1(0,2)

d !
B-comp: O = _ﬁlf”a% — p' = gr,2)
Z-comp: O=——ldp' +y@(r8_w)
p: P oz I or\ or

Since (0, z) = g(r, z) must have (6, z) = f(z) and g(r,z) = g(z)
-- only z dependence is possible. So p'=p'(z).

Rewrite z-comp eq? with ordinary derivatives,

_ _1dp vd( dw
0= pPdz 1”dr(r dr)
at most a f! of z at most a f* of r

But a fo of z can't equal a f of r unless the functions are const.



Mult by r/v:

d(.dw) _ r dp r dp' .

dr( dr) = PVdz T Hdz int wr.t.r,
cdw r2dp .

dl‘ Zudz +A 'byr,

v = rdp""A intwrt r
dr 21 dz r It r,

_ r2dp

W(r)_Zﬂdz + Alnr + B

Want w to be finite along centerline r=0 (a finiteness "boundary

condition") ..

2 dp‘

N s
O_4udz +11\lna+B,
0
__ 1o o
wir) = 4u dz (a r)

take to avoid singularity.
No-slip b.c. on pipe wall: w(a) =

Volume flux through pipe:

0.
__a*dp
B=- 4u dz
a parabolic profile
r=a
r=0
r=a



Q= fi AdA = " ffwrdrd® = 2n7wrdr
0

__2mdp o 2 4
=~ 4z {(a r2) rdr| — a%/4

Q__ TCdpa4

= — 31 dz Hagen-Poiseuille law

- obtained theoretically by Stokes but he didn't publish it because
it didn't agree w/ his experiments. His experiments were
turbulent but the theory is for laminar flow. [see pg 92 of
Truesdell's "Six lectures on modern natural philosophy"]

- HP law discovered experimentally by Hagen and Poiseuille.
[1993 Ann. Rev. Fluid Mech. article on Poiseuille's experiments]

- Experimental confirmation of HP law confirms appropriateness
of NS eq™ as governing eq™ of motion (at least for liquid).
Confirms F = ma, Newtonian hypothesis and no slip condition.

_ volume flux is tremendously sensitive to pipe radius (Q o« a%)

d !
- Epz_ oc % . In case of blood flow. body tries to maintain a fixed
dp

Q. Ifa ! (e.g. due to cholesterol deposits) then g, 8oes way

up to maintain Q. This is why cholesterol deposits are often
associated w/ high blood pressure.

HP law breaks down when flow becomes turbulent (as in Stokes
case). Then N.S. eq® are still valid but our starting assumptions
are violated (flow is unsteady, not unidirectional, no symmetry).



