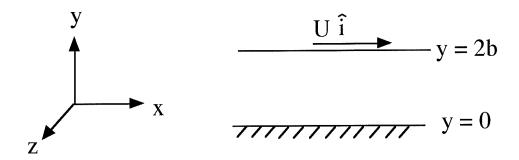
METR 5113, Advanced Atmospheric Dynamics I Alan Shapiro, Instructor Monday, 1 Rocktober 2018 (lecture 18)

Exact solutions of incompressible Navier-Stokes eqns (contd)

Planar Couette Flow

[Ask students to go through this Couette analysis themselves]

Again consider steady flow btw 2 infinite parallel plates. This time suppose there is <u>no pgf</u> but the top plate is moving with velocity $U\hat{i}$. As before, assume 2-D flow u = u(y), v = 0, w = 0.



Impermeability condⁿ: v(0) = 0, v(2b) = 0. Automatically satisfied since v = 0 everywhere.

No-slip condⁿ on w: w(0) = 0, w(2b) = 0. Automatically satisfied since w = 0 everywhere.

No slip condⁿ on u: u(0) = 0 (fluid sticks to stationary plate) u(2b) = U (fluid sticks to moving plate) We'll enforce these conditions later.

Can show that incomp condⁿ is satisfied everywhere (get 0 = 0). Write down N.S. eq^{ns} and slaughter terms like before but now all pgf terms are 0 (flow driven by moving plate, not pgf). Get:

x-comp NS eqn:
$$v \frac{d^2u}{dy^2} = 0$$

y-comp NS eqⁿ:
$$0 = 0$$

z-comp NS eqn:
$$0 = 0$$

int. x-comp eqn w.r.t. y, get

$$\frac{du}{dy} = C$$
, int again w.r.t. y, get
 $u = Cy + D$

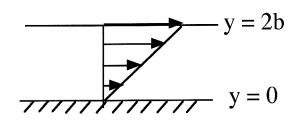
Apply no-slip condition on u on lower plate:

$$\mathbf{u}(0) = 0 \quad \rightarrow \quad 0 = 0 + \mathbf{D} \quad \therefore \quad \mathbf{D} = 0$$

Apply no-slip condition on u on upper plate:

$$u(2b) = U \rightarrow U = C 2b + D \therefore C = \frac{U}{2b}$$

$$\therefore \quad \boxed{u = \frac{U}{2b} y} \quad \text{linear profile}$$



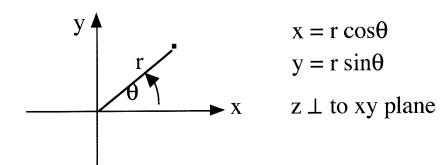
Combination Planar Poiseuille/Couette flow

Get a solⁿ for flow due to boundary translation <u>and</u> imposed pgf [You're invited to party fill in the details.]

$$u = \frac{U}{2b}y + \frac{K}{\rho v}\left(\frac{y^2}{2} - by\right), \quad v = 0, \quad w = 0$$

[for picture, see Kundu, Fig. 9.4 (eds. 1-4), or Fig. 8.4 (5th ed.)]

N.S. eqns in cylindrical coords



Cartesian

X, Y, Z

u, v, w

Cylindrical

 r, θ, z (r: radial, θ : azimuthal)

 u_r, u_θ, u_z or call them u, v, w (not Cartesian!)

r comp NS eqⁿ:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial r} + \frac{v}{r} \frac{\partial u}{\partial \theta} + w \frac{\partial u}{\partial z} - \frac{v^2}{r} = -\frac{1}{\rho} \frac{\partial p'}{\partial r} + v \left(\nabla^2 u - \frac{2}{r^2} \frac{\partial v}{\partial \theta} - \frac{u}{r^2} \right)$$

 θ -comp NS eqⁿ:

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{u} \frac{\partial \mathbf{v}}{\partial r} + \frac{\mathbf{v}}{r} \frac{\partial \mathbf{v}}{\partial \theta} + \mathbf{w} \frac{\partial \mathbf{v}}{\partial z} + \frac{\mathbf{u} \mathbf{v}}{r} = -\frac{1}{\rho r} \frac{\partial \mathbf{p'}}{\partial \theta} + \mathbf{v} \left(\nabla^2 \mathbf{v} + \frac{2}{r^2} \frac{\partial \mathbf{u}}{\partial \theta} - \frac{\mathbf{v}}{r^2} \right)$$

z-comp NS eqn:

$$\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial r} + \frac{v}{r} \frac{\partial w}{\partial \theta} + w \frac{\partial w}{\partial z} = -\frac{1}{\rho} \frac{\partial p'}{\partial z} + v \nabla^2 w$$

where
$$\nabla^2 = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} + \frac{\partial^2}{\partial z^2}$$

Incomp condⁿ:
$$\frac{1}{r} \frac{\partial}{\partial r} (r u) + \frac{1}{r} \frac{\partial v}{\partial \theta} + \frac{\partial w}{\partial z} = 0$$

Poiseuille flow

Consider <u>steady unidirectional pressure-driven</u> flow in a pipe of circular cross-section.

Use cylindrical coords. Put z-axis down center of pipe. Let pipe radius be a.

Assume unidirectional flow such that:

$$\vec{u} = w \hat{k}$$
, $u = 0$, $v = 0$ (no radial flow) (no azimuthal flow)

Also assume flow is symmetric about pipe axis and indep of downstream direction z. \therefore w = w(r)

Impermeability condition: flow component normal to pipe should be 0 (on pipe), i.e., u(a) = 0. It's satisfied since u = 0 everywhere.

No-slip condition on pipe surface (involves v and w): v(a) = 0 satisfied since v=0 everywhere w(a) = 0 ... need to return to this one later.

Incomp condⁿ:
$$\frac{1}{r} \frac{\partial}{\partial r} (r u) + \frac{1}{r} \frac{\partial v}{\partial \theta} + \frac{\partial w}{\partial z} = 0$$

$$since u = 0 \qquad v = 0 \qquad w \text{ indep of } z$$

$$get: 0 + 0 + 0 = 0. \quad okee$$

N.S. eqns for this case reduce to:

r comp:
$$0 = -\frac{1}{\rho} \frac{\partial p'}{\partial r} \rightarrow p' = f(\theta, z)$$

 θ -comp: $0 = -\frac{1}{\rho r} \frac{\partial p'}{\partial \theta} \rightarrow p' = g(r, z)$

z-comp:
$$0 = -\frac{1}{\rho} \frac{\partial p'}{\partial z} + \frac{v}{r} \frac{\partial}{\partial r} \left(r \frac{\partial w}{\partial r} \right)$$

Since $f(\theta, z) = g(r, z)$ must have $f(\theta, z) = f(z)$ and g(r,z) = g(z) -- only z dependence is possible. So p' = p'(z).

Rewrite z-comp eqn with ordinary derivatives,

$$0 = -\frac{1}{\rho} \frac{dp'}{dz} + \frac{v}{r} \frac{d}{dr} \left(r \frac{dw}{dr} \right)$$
at most a fⁿ of z at most a fⁿ of r

But a fⁿ of z can't equal a fⁿ of r unless the functions are <u>const.</u>

Mult by r/v:

$$\frac{d}{dr}\left(r\frac{dw}{dr}\right) = \frac{r}{\rho\nu}\frac{dp'}{dz} = \frac{r}{\mu}\frac{dp'}{dz} \qquad \text{int w.r.t. r,}$$

$$r\frac{dw}{dr} = \frac{r^2}{2\mu}\frac{dp'}{dz} + A \qquad \div \text{by r,}$$

$$\frac{dw}{dr} = \frac{r}{2\mu}\frac{dp'}{dz} + \frac{A}{r} \qquad \text{int w.r.t. r,}$$

$$w(r) = \frac{r^2}{4\mu}\frac{dp'}{dz} + A \ln r + B$$

Want w to be finite along centerline r=0 (a finiteness "boundary condition") \therefore take A = 0 to avoid singularity.

No-slip b.c. on pipe wall: w(a) = 0.

$$\therefore \quad 0 = \frac{a^2}{4\mu} \frac{dp'}{dz} + A \ln a + B, \qquad \therefore \quad B = -\frac{a^2}{4\mu} \frac{dp'}{dz}$$

$$\therefore \quad \boxed{w(r) = -\frac{1}{4\mu} \frac{dp'}{dz} \left(a^2 - r^2\right)} \quad \text{a parabolic profile}$$

$$r = a$$

$$- r = 0$$

$$r = a$$

Volume flux through pipe:

$$Q = \int \vec{u} \cdot \hat{n} dA = \int_0^{2\pi} \int_0^a w \, r dr \, d\theta = 2\pi \int_0^a w \, r \, dr$$
$$= -\frac{2\pi}{4\mu} \frac{dp'}{dz} \left[\int_0^a (a^2 - r^2) \, r \, dr \right] \rightarrow a^4/4$$

$$\therefore \quad Q = -\frac{\pi}{8\mu} \frac{dp'}{dz} a^4 \quad \text{Hagen-Poiseuille law}$$

- obtained theoretically by Stokes but he didn't publish it because it didn't agree w/ his experiments. His experiments were <u>turbulent</u> but the theory is for <u>laminar flow</u>. [see pg 92 of Truesdell's "Six lectures on modern natural philosophy"]
- HP law discovered experimentally by Hagen and Poiseuille. [1993 Ann. Rev. Fluid Mech. article on Poiseuille's experiments]
- Experimental confirmation of HP law confirms appropriateness of NS eq^{ns} as governing eq^{ns} of motion (at least for liquid). Confirms F = ma, Newtonian hypothesis and no slip condition.
- volume flux is tremendously sensitive to pipe radius ($Q \propto a^4$)
- $-\frac{dp'}{dz} \propto \frac{Q}{a^4}$. In case of <u>blood flow</u>, body tries to maintain a fixed
- Q. If a \downarrow (e.g. due to cholesterol deposits) then $\frac{dp'}{dz}$ goes way up to maintain Q. This is why cholesterol deposits are often associated w/ high blood pressure.

HP law breaks down when flow becomes turbulent (as in Stokes case). Then N.S. eqⁿ are <u>still valid</u> but our starting assumptions are violated (flow is unsteady, not unidirectional, no symmetry).