METR 5113, Advanced Atmospheric Dynamics I
Alan Shapiro, Instructor
Wednesday, 10 Rocktober 2018 (lecture 21)

- 2 handouts: 2 pix from Van Dyke's "Album of fluid motion"

In some cases friction is negligible, at least for part of domain.
e.g. flow around a telephone pole:
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Friction important in a thin boundary layer (b.l.) adjacent to solid
boundary. Can get boundary layer separation downstream (in
the lee) of solid object: slow flow near bdry erupts into main
flow and leads to a wake of eddies (vortices) and turbulence in

the lee. Friction is important in b.l. (next to object) and in wake.
But outside of b.l./wake region. friction is not important.

- see handouts on flows around cylinders (from Van Dyke).

Frictionless flow (Inviscid flow)

In areas where friction is not important, can throw out the
friction term in the Navier-Stokes equations, get:
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This is eq? of motion for inviscid flows (frictionless flows). Valid
for compressible or incompressible flows.




Highest order spatial derivative in N.S. eq®s is 2 (viscous term
involves Laplacian, a 2nd order operator). In Euler eq, highest
order spatial derivative is 1 (advection terms). In general, the
higher the order of the d.e., the more b.c.s needed to solve it. At
a solid bdry, appropriate b.c. for N.S. eqns are impermeability and
no-slip, but appropriate b.c. for Euler eqns is just impermeability.

Various forms of Euler Eqns

%% + (fj -V) i = —%Vp + & (here p is full pressure)
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Use vector identity: (ﬁ : V) i= V%— +® X U, where q?=1-1U
(q = Vi -u 1s wind speed ).

Alsouse: 8 = —gk = -Vgz (gE|§|)
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If the flow is barotropic (p = p(p)) then

p(X)
d d d
% Vp =V f ——pE where f -§B = f —-ﬁE is a line integral
P(io)
Proof: For barotropic flow, —1—Vp i pTlp)—Vp . Want to write it as

V(f™ of p only) . Want to find a G =G(p) such that | VG = —pl—Vp .

From chain rule: |VG = %Vp . For both to be true we must




have %g— = % . Integrate w.r.t. p along any line from an arbitrary

P(X)
" - d
start point X to an end point X : G(p) = f —pE :
P(io)
p(i)d
Ly, = P
So: D Vp = Vf D
p(Xgp)

So with barotropic assumption, Euler's eq™ become:
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%+V(—(—12——+f(%p+gz)+ﬁ°)xﬁ=0

Can "integrate" Euler eqs in 2 Special Cases:

Case 1: Ifflow is steady and barotropic (and inviscid) then:
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V(%+J%B+gz)+6')xﬁ:0

Let dr be an element of streamline. Take dr - Euler eqn, get:

dr - V(%+f——pg+gz)+ dr- (@x )| =0
J
0 [®x is L i,anddr is parallel to U

so WX is L dr]

. 2
dr-V(%—+fd?p+gz)=0



scratch paper

The tiny change (differential) of Q over a tiny distance dl = dx;€;

is: dQ = g—)—g dx; =VQ- di . Applying this to above eqn, with di
1

chosen to be a chunk of streamline dr , we get: dQ =0 alonga

streamline, where Q = - + f o ter.

d( J — +8z) = 0 along a streamline.

q2 dp . :
Ll f—p— + gz = C| where C is const along a streamline

(might be dif on dif streamlines). This is Bernoulli's eq2 for
steady. inviscid, barotropic flow.

If p is const then %Vp = V—g and a derivation similar to that

above yields,
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92— + g— + gz = C| Bernoulli's eqn for steady. inviscid

const density flow. It's an energy eq® (sum of kinetic energy,
potential energy and "pressure potential" energy is const).

Case 2: If flow is irrotational (® =0 so ® X i =0) and
barotropic (and inviscid) can derive a different Bernoulli eq?,
which is valid whether or not flow is in a steady state. For
irrotational, inviscid, barotropic flow (but possibly unsteady)
Euler's eq®s become:



i d
%—Q+V(q f—p£+gz)=0

Since ® =0 (V x U =0) there exists a velocity potential ¢ s.t.:
i = Vo (can show thatif i=V¢ then V X1 =0. Reverse is
true as well but more difficult to show).

i _ do
Jt ~ Vq> Vat

Euler's eqts becomes:

d
V( Pl % + f?p +gz) =0 (everywhere)

If V() = 0 everywhere then () is spatially const .

So get Bernoulli's eqt for inviscid. barotropic, irrot flow:

J + 8z = same const everywhere

[well, C can be a fo of time but time dependence is irrelevant. |

If density is constant the appropriate B eqn for irrot flow is:

0 2
% + —% + g— + gz =C same const everywhere

Let B1 be a version of Bernoulli's eqn appropriate for steady
state flows, and B2 be a version of Bernoulli eqn appropriate for
irrotational flows. Then we can draw a conceptual Venn diagram
showing when you can use either, both or neither of these two
Beroulli egns:



B2

irrotational

neither steady nor irrotational

In this diagram we consider all possible flows that are inviscid
and barotropic (or const density). For flows that are both steady
and irrotational (intersection of B1 and B2) you can use either
B1 or B2. In such a case, the use of B2 may be preferable to B1
since the constant "C" in B2 is a constant everywhere, not just
along a streamline. If a flow is neither steady nor irrotational,
you're out of luck -- can't use B1 or B2. However if the flow is
"almost" steady (i.e., if the unsteady term is really tiny) then you
might be able to get by with a steady-state approximation.



