METR 5113, Advanced Atmospheric Dynamics I
Alan Shapiro, Instructor
Friday, 12 Rocktober 2018 (lecture 22)

1 handout: answers to problem set 3.

Applications of Bernoulli's eqns

Example 1: Constriction in a channel (flow through a canyon)

Assume steady state and $\rho=$ const. Use steady state version of B eqn (where vort may or may not be zero):

$$
\frac{q^{2}}{2}+\frac{p}{\rho}+g z=C \quad \text { (along a streamline) }
$$

Consider flow along central streamline (through A and B). Far upstream of constriction (at A) $\overrightarrow{\mathrm{u}}=\mathrm{U} \hat{\mathrm{i}}$, so $\mathrm{q}_{\mathrm{A}}=\mathrm{U}$.

$$
\therefore \frac{\mathrm{U}^{2}}{2}+\frac{\mathrm{p}_{\mathrm{A}}}{\rho}+\mathrm{gz}_{\mathrm{A}}=\mathrm{C}
$$

At the constriction (B):

$$
\frac{q_{\mathrm{B}}^{2}}{2}+\frac{\mathrm{p}_{\mathrm{B}}}{\rho}+\mathrm{gz}_{\mathrm{B}}=\mathrm{C}
$$

Same C in both eqns because we're on same streamline.

Flow is faster at B than at A (from mass cons eq ${ }^{n}$). So a parcel accelerates from A to B. Bernoulli's eq ${ }^{\mathrm{n}}$ says this acceleration is associated with a pressure drop.

Get qualitatively same result if you assume uniform flow upstream and use irrotational version of Bernoulli's eqn.

Theoretically, very fast speeds can be associated w/ negative pressures (tensions rather than compressions). In liquids get cavitation (boiling) when vapor pressure is reached. Collapsing vapor bubbles can damage dam spillways, submarine propellers and pumps/pipes.

Example 2 - Steady, 2D, deflection of a uniform flow around a cylinder (e.g. telephone pole). (t-storm updrafts sometimes behave as if they're solid cylinders)

S is a stagnation point -- all velocity comps are 0 at S. Normal comp at S is 0 due to impermeability cond ${ }^{\mathrm{n}}$. Tangential comp at S is 0 from symmetry (not from no-slip cond ${ }^{\mathrm{n}}$). $\therefore \mathrm{q}_{\mathrm{s}}=0$.

From mass cons and streamline deflection (confluence) north and south of cylinder, expect fast flow north and south of cylinder.

Use Bernoulli eq ${ }^{\mathrm{n}}$ for irrotational flow but w/ unsteady term $=0$ since this is a steady state. Assume $\rho=$ const.

$$
\frac{q^{2}}{2}+\frac{p}{\rho}+g z=C(\text { same const everywhere })
$$

Far upstream (anywhere upstream):

$$
\frac{\mathrm{U}^{2}}{2}+\frac{\mathrm{p}_{\mathrm{up}}}{\rho}+\mathrm{gz}=\mathrm{C}
$$

At stagnation point at S :

$$
0+\frac{p_{s}}{\rho}+g z=C \quad \text { (same const as above) }
$$

$$
\begin{aligned}
& \therefore \quad \frac{\mathrm{U}^{2}}{2}+\frac{\mathrm{p}_{\mathrm{up}}}{\rho}+\mathrm{gZ}=\frac{\mathrm{p}_{\mathrm{s}}}{\rho}+\mathrm{gZ} \quad \text { cancellation } \\
& \therefore \quad \mathrm{p}_{\mathrm{s}}=\mathrm{p}_{\mathrm{up}}+\rho \frac{\mathrm{U}^{2}}{2} \\
& \therefore \quad \mathrm{p}_{\mathrm{s}}>\mathrm{p}_{\mathrm{up}} \quad \therefore \text { high pressure at stagnation point. }
\end{aligned}
$$

Now look on north point of cylinder:

$$
\begin{aligned}
& \frac{\mathrm{q}_{\mathrm{B}}^{2}}{2}+\frac{\mathrm{p}_{\mathrm{B}}}{\rho}+\mathrm{gz}=\mathrm{C} \\
\therefore \quad & \frac{\mathrm{q}_{\mathrm{B}}^{2}}{2}+\frac{\mathrm{p}_{\mathrm{B}}}{\rho}+\mathrm{gz}=\frac{U^{2}}{2}+\frac{\mathrm{p}_{\mathrm{up}}}{\rho}+\mathrm{gz}
\end{aligned}
$$

$$
\therefore \quad \mathrm{p}_{\mathrm{B}}=\mathrm{p}_{\mathrm{up}}+\frac{\rho}{2}\left(\mathrm{U}^{2}-\mathrm{q}_{\mathrm{B}}^{2}\right) \rightarrow \text { negative since } \mathrm{U}<\mathrm{q}_{\mathrm{B}}
$$

$\therefore \quad \mathrm{p}_{\mathrm{B}}<\mathrm{p}_{\text {up }} \therefore$ low pressure at north point of cylinder (and at south point)

In real life p at rear stag point is not as big as p at forward stag point (due to friction, boundary layer separation in lee of
cylinder, and possible turbulence). End up with a net pressure force on cylinder in direction of flow. However, analysis of forward part of cylinder and upstream still valid (a la Prandtl).

Example 3 - Same as example 2 but consider flow over horizontally-oriented cylinder (or tree branch).

Rewrite using perturbation pressure $\mathrm{p}^{\prime} .\left[\mathrm{p}=\mathrm{p}^{\prime}+\overline{\mathrm{p}}(\mathrm{z})\right.$
$=\mathrm{p}^{\prime}+($ const $-\rho g z)=\mathrm{p}^{\prime}-\rho g z+$ const $]$.
$\therefore \frac{p}{\rho}+g z=\frac{p^{\prime}}{\rho}+$ const
$\therefore \frac{\mathrm{q}^{2}}{2}+\frac{\mathrm{p}^{\prime}}{\rho}=\mathrm{C}$ (this C differs from old C)
Proceed as in example 2, but work w/ pert pressure p' instead of full p . Get low perturbation pressure p^{\prime} at top and bottom of cylinder, and high perturbation pressure at stag point.

Example 4: Wind-storm over a Walmart.

Similar to previous example. Can use irrot version of B eqn w/unsteady term set to 0 .

$$
\begin{aligned}
& \frac{\mathrm{q}^{2}}{2}+\frac{\mathrm{p}}{\rho}+\mathrm{gz}=\mathrm{C} \text { (same const everywhere) } \\
& \therefore \frac{\mathrm{q}^{2}}{2}+\frac{\mathrm{p}^{\prime}}{\rho}=C
\end{aligned}
$$

Get high p' at 2 stag points. Get fast flow above roof. There q^{2} is really big so p^{\prime} is large negative (low p) but p inside building is nearly the same as before storm (it was hydrostatic so $\mathrm{p}^{\prime}=0$ there). \therefore net pert pressure force on roof is large and upward -roof lifts off. Then pressures equalize and roof falls into store.

