
1

METR 5113, Advanced Atmospheric Dynamics I
Alan Shapiro, Instructor

Friday, 12 Rocktober 2018 (lecture 22)

1 handout: answers to problem set 3.

Applications of Bernoulli's eqns

Example 1:  Constriction in a channel (flow through a canyon)
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Assume steady state and ρ = const.  Use steady state version of
B eqn (where vort may or may not be zero):

  q2

2
+

p
ρ + gz = C    (along a streamline)

Consider flow along central streamline (through A and B).  Far
upstream of constriction (at A)    u = Ui, so q A = U .

  
∴ U2

2
+

p A
ρ + gzA = C

At the constriction (B):

  qB
2

2
+

pB
ρ + gzB = C

Same C in both eqns because we're on same streamline.



2

  
∴ U2

2
+

p A
ρ + gzA =

qB
2

2
+

pB
ρ + gzB         cancellation

                                                                                           since  zA = zB

  ∴ p A – pB =
ρ
2

(qB
2 – U2)  > 0  since  qB > U  (from mass cons)

                                                                     fast     slow

  ∴ p A > pB

. .A B
slow fast slow

at A: high p
relative to B

at B: low p
relative to A back to high p 

relative to B

Flow is faster at B than at A (from mass cons eqn).  So a parcel
accelerates from A to B.  Bernoulli's eqn says this acceleration is
associated with a pressure drop.

Get qualitatively same result if you assume uniform flow
upstream and use irrotational version of Bernoulli's eqn.

Theoretically, very fast speeds can be associated w/ negative
pressures (tensions rather than compressions).  In liquids get
cavitation (boiling) when vapor pressure is reached.  Collapsing
vapor bubbles can damage dam spillways, submarine propellers
and pumps/pipes.

Example 2 - Steady, 2D, deflection of a uniform flow around a
cylinder (e.g. telephone pole).  (t-storm updrafts sometimes
behave as if they're solid cylinders)
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    U
uniform 
upstream
flow
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B.

A
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y

slight deflection of far-away streamline

slight deflection

big
deflection
of
centerline
streamline

S is a stagnation point -- all velocity comps are 0 at S.  Normal
comp at S is 0 due to impermeability condn.  Tangential comp at
S is 0 from symmetry (not from no-slip condn). ∴  qs = 0.

From mass cons and streamline deflection (confluence) north
and south of cylinder, expect fast flow north and south of
cylinder.

Use Bernoulli eqn for irrotational flow but w/ unsteady term = 0
since this is a steady state.  Assume ρ = const.

  q2

2
+

p
ρ + gz = C (same const everywhere)

Far upstream (anywhere upstream):

  U2

2
+

pup
ρ + gz = C

At stagnation point at S:

  
0 +

ps
ρ + gz = C     (same const as above)
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∴ U2

2
+

pup
ρ + gz =

ps
ρ + gz    cancellation

  
∴ ps = pup + ρ U2

2

  ∴ ps > pup         ∴  high pressure at stagnation point.

Now look on north point of cylinder:

  qB
2

2
+

pB
ρ + gz = C

  
∴ qB

2

2
+

pB
ρ + gz = U2

2
+

pup
ρ + gz

  ∴ pB = pup +
ρ
2

(U2 – qB
2)

→ negative since U < qB

  ∴ pB < pup   ∴  low pressure at north point of cylinder (and at
south point)

H H

L

L

forward 
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rear 
stagnation 
point

fast

fast

In real life p at rear stag point is not as big as p at forward stag
point  (due to friction, boundary layer separation in lee of
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cylinder, and possible turbulence).  End up with a net pressure
force on cylinder in direction of flow.  However, analysis of
forward part of cylinder and upstream still valid (a la Prandtl).

Example 3 - Same as example 2 but consider flow over
horizontally-oriented cylinder (or tree branch).

    U
uniform 
upstream
flow .

x

z

  q2

2
+

p
ρ + gz = C (same const everywhere)

Rewrite using perturbation pressure p'.  [   p = p′ + p(z)
  = p′ + (const – ρgz) = p′ – ρgz + const ].

  
∴ p

ρ + gz =
p′
ρ + const

  
∴ q2

2
+

p′
ρ = C   (this C differs from old C)

Proceed as in example 2, but work w/ pert pressure p' instead of
full p.  Get low perturbation pressure p' at top and bottom of
cylinder, and high perturbation pressure at stag point.
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Example 4:  Wind-storm over a Walmart.

x

z
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fast, L

Similar to previous example.  Can use irrot version of B eqn
w/unsteady term set to 0.

  q2

2
+

p
ρ + gz = C (same const everywhere)

  
∴ q2

2
+

p′
ρ = C

Get high p' at 2 stag points.  Get fast flow above roof.  There q2

is really big so p' is large negative (low p) but p inside building is
nearly the same as before storm (it was hydrostatic so p'=0
there).  ∴  net pert pressure force on roof is large and upward --
roof lifts off.  Then pressures equalize and roof falls into store.


