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1 handout: problem set 4

Barrel problem continued
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recall that for barrel prob: —- + gh = 5 ()

get a more accurate relation than Torricelli's thm by keeping V
-- get V from mass cons eq?, VA = va.
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When does barrel run dry? Happens at time T when h(T) =0.
Let's find a formula for h(t) and then find T such that h(T) = 0.

Write (***%*) as eq involving h as the only dependent variable.



V = - dh (need minus sign since dh/dt is negative and we've been

dt

treating V -- speed -- as positive).
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So (¥***) becomes,
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e - _Vh \/ A2 2 (first order nonlinear ode)

separate variables:

dh 2g - :
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N \/ 22 - 1 integrate it

Apply initial condition h(0) = hy in above result, get: D =24/h

With D now known, can solve for h as:
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Water runs out at the special time T, when h(T) = 0:
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Time to run dry is longer for deeper barrels (h 0 ) and wider
barrels (A ) ... and on planets with weaker gravity (g V).

2-D incompressible irrotational flows
This topic is covered in Ch7 of Kundu (6th ed) and Ch 6 of
Kundu (editions 1-5)

Suppose flow is 2-D [u=u(x,y), v=v(x,y), w = 0], and
incompressible. Incomp cond® for 2-D flow:
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. Can introduce a streamfunction \ such that,

(A) u = %%, V= — %4: (looked at this about a month ago)

This means that i = —k X Vy
Vy

y=2
AT
Suppose flow is also irrotational: ® = 0

s U = Vo (¢is velocity potential)



(B)u:—&, V=3§

o=1 =2 ¢=3

Vo, U

Flows that are incomp and irrot are known as potential flows.

Comparing (A) with (B) we get:
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Cauchy-Riemann equations
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If you know ¢, you can solve C-R eqns for y (and vice-versa).

Using C-R eqns can show that lines of const ¢ are orthogonal
(L) to lines of const ., i.e., V¢ - Vy = 0:

W lines

¢ lines



dd ~ 90 - oY~ OV =
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= aX aX + ay ay Use C-R eqns
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Use C-R eq™ (2 eq™ in 2 unknowns) to get 1 eq® in 1 unknown:
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Add 'em up:
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Laplace's eqd. A 2nd order linear elliptic pde

Similarly, can show |V*y = 0|. So both ¢ and v satisfy 2D

Laplace eqns.

To solve Laplace's eq (e.g. V2y = 0) need one of 2 kinds of
boundary conditions.



(1) Dirichlet condd: Dependent variable is specified on bdry:

= Sin7x
y 0 4
y= A
T__> X T~ Y= sinTy
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(2) Neumann condd: Normal derivative of dep variable is
specified on bdry. (dy/dn is specified, where dy/on = fi-Vy
and i is unit outward normal to bdry) i.e., velocity component

tangential to bdry is specified

Jy/on = oy/dy = u = specified
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= specified = specified

il
oy/on = - dy/dy = - u = specified



e.g.

oy/dy = 2x
V4
oy/ox =0
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oy/ay =/2X

Can also "mix and match":



