METR 5113, Advanced Atmospheric Dynamics I Alan Shapiro, Instructor Friday 19 Rocktober 2018 (lecture 25)

2D incompressible irrotational flow (contd)

<u>Careful w/ purely Neumann b.c.!</u> There's a <u>compatibility cond</u>ⁿ that boundary data must satisfy if problem is to have a solⁿ.

Suppose $\nabla^2 \psi = 0$ w/ Neumann b.c.: $\partial \psi / \partial n =$ specified on bdry. Integrate Lap eqⁿ over the flow domain.

$$\therefore \int \nabla^2 \psi \, dA = 0$$

$$\therefore \int \nabla \cdot \nabla \psi \, dA = 0$$

Use 2D div thm: $\int \nabla \cdot \nabla \psi \, dA = \oint \nabla \psi \cdot \hat{\mathbf{n}} \, dl$

$$\therefore \oint \nabla \psi \cdot \hat{\mathbf{n}} \, dl = 0$$

Using defⁿ of normal deriv: $\partial \psi / \partial n = \hat{n} \cdot \nabla \psi$, we get

$$\therefore \quad \oint \frac{\partial \Psi}{\partial n} \, \mathrm{d}l = 0$$

If you use purely Neumann b.c. to solve Lap eqⁿ, make sure compatibility condⁿ is satisfied by $\partial \psi / \partial n$ data-- or the problem has no solution [integrated Lap eqn would contradict b.c.]

For $\nabla^2 \psi = 0$ the compatibility condⁿ means "integrated tangential wind on boundary is 0". This condition is consistent with <u>Stokes th</u>^m: since flow is irrot, vort is 0 so area integral of vort is 0, so integrated tangential wind on bdry is 0.

For $\nabla^2 \phi = 0$, compatibility condⁿ is $\oint \partial \phi / \partial n \, dl = 0$, which means "integrated normal comp wind on bdry is 0". It agrees with $\underline{\text{div}}$ $\underline{\text{th}}^{\underline{m}}$: since flow is 2D incomp (horiz non-divergent), area integral of horiz divergence is 0, so integrated normal comp wind on bdry is 0.

Pictorial examples of flows on bdry satisfying $\oint \partial \psi / \partial n \, dl = 0$:

Careful with Neumann b.c. with Poisson eqn and other elliptic eqns. Doesn't mean Neumann b.c. is "bad" -- many times this is the one that you should impose -- but be careful. If you specify Dirichlet b.c. on bdry (even on part of it), there's nothing to worry about since $\oint \partial \psi / \partial n \, dl$ is not being imposed.

<u>Uniqueness Proof for Laplace's eqn</u>

Suppose we find a function ψ_1 satisfying $\nabla^2 \psi_1 = 0$ on flow domain with Dirichlet b.c. ψ_1 = specified on bdry. Is ψ_1 the only solⁿ satisfying Laplace's eqⁿ w/ same Dirichlet b.c.? Lets see what happens if we suppose there's another function ψ_2 satisfying Laplace's eqⁿ and the same Dirichlet b.c.

Define $\psi_d = \psi_2 - \psi_1$, the difference btw the two solns.

On bdry:

$$\therefore \psi_2 - \psi_1 = 0 \text{ on bdry } \therefore \psi_d = 0 \text{ on bdry}$$

Within the flow domain:

$$\nabla^2 \psi_d = \nabla^2 (\psi_2 - \psi_1) = \nabla^2 \psi_2 - \nabla^2 \psi_1 = 0 - 0 = 0$$

 ψ_d satisfies Lap eqⁿ, and $\psi_d = 0$ on bdry.

$$\nabla^2 \psi_{\rm d} = 0$$

$$\therefore \quad \psi_{\rm d} \nabla^2 \psi_{\rm d} = 0$$

$$\therefore \int \psi_d \nabla^2 \psi_d \, dA = 0$$

scratch paper to help us integrate the above integral by parts:

$$\nabla \cdot (\psi_d \nabla \psi_d) \ = \ \psi_d \, \nabla \cdot \nabla \psi_d \ + \ \nabla \psi_d \cdot \nabla \psi_d \ \ (\text{vector product rule})$$

$$\therefore \quad \nabla \cdot (\psi_{d} \nabla \psi_{d}) = \psi_{d} \nabla^{2} \psi_{d} + \left| \nabla \psi_{d} \right|^{2}$$

$$\therefore \quad \psi_{d} \nabla^{2} \psi_{d} = \nabla \cdot (\psi_{d} \nabla \psi_{d}) - |\nabla \psi_{d}|^{2}$$

$$\therefore \int \left[\nabla \cdot \left(\psi_{d} \nabla \psi_{d} \right) \right] - \left| \nabla \psi_{d} \right|^{2} dA = 0$$

use div th^m on first term (assuming 1st derivs are continuous)

$$\therefore \oint \psi_{d} \frac{\partial \psi_{d}}{\partial n} dl - \int |\nabla \psi_{d}|^{2} dA = 0$$
bdry (line) integral

But $\psi_d = 0$ on bdry \therefore line integral = 0!

$$\therefore \int |\nabla \psi_{\rm d}|^2 \, \mathrm{d} A = 0$$

 $\left|\nabla\psi_{d}\right|^{2}$ must be ≥ 0 . But if $\left|\nabla\psi_{d}\right|^{2} > 0$ anywhere in domain then the integral would be positive, not 0. So $\left|\nabla\psi_{d}\right|^{2}$ must be 0 everywhere. So $\nabla\psi_{d} = 0$ everywhere.

$$\therefore$$
 ψ_d = const (everywhere)

But $\psi_d = 0$ on bdry \therefore const = 0.

$$\psi_d = 0$$
 everywhere

$$\psi_2 - \psi_1 = 0$$
 everywhere

$$\psi_2 = \psi_1$$
 everywhere

 \therefore There really is only 1 solution. (i.e., solⁿ is unique).

Note: Uniqueness proof relied on validity of div th^m. Proof breaks down for 2-D flow around infinite cylinder of any cross-

section shape. In that case, solⁿ of Lap eqⁿ w/ Dirichlet b.c. not unique in flow domain [nonuniqueness is associated with possibility that ψ is multivalued] See section 6.10 of Kundu.

What about solution uniqueness of Lap eqn w/ Neumann b.c.? Suppose we find a function ψ_1 satisfying $\nabla^2 \psi_1 = 0$ everywhere, with $\partial \psi_1 / \partial n$ specified on bdry [satisfying compatability condⁿ]. Is ψ_1 the only solⁿ satisfying Lap eqⁿ w/ same Neumann b.c.?

Suppose ψ_2 satisfies Laplace's eqn w/ same Neumann b.c. as ψ_1 .

Define $\psi_d \equiv \psi_2 - \psi_1$.

Retrace steps from before. Find that:

$$\nabla^2 \psi_d = 0$$
, and $\partial \psi_d / \partial n = 0$ on bdry

$$\therefore \int \psi_d \nabla^2 \psi_d \, dA = 0$$

$$\therefore \oint \psi_{d} \frac{\partial \psi_{d}}{\partial n} dl - \int |\nabla \psi_{d}|^{2} dA = 0$$

(where we've assumed it's legal to use div th^m).

But $\partial \psi_d / \partial n = 0$ on bdry (in prev proof $\psi_d = 0$ on bdry)

$$\therefore \oint \psi_{d} \frac{\partial \psi_{d}}{\partial n} \, dl = 0$$

$$\therefore \int |\nabla \psi_{\rm d}|^2 dA = 0$$

- $\nabla \psi_d = 0$ everywhere.
- \therefore ψ_d = const (everywhere)

But b.c. $\partial \psi_d / \partial n = 0$ is satisfied for <u>any choice of const</u>.

$$\psi_2 - \psi_1 = \text{const}$$
 (everywhere)

$$\psi_2 = \psi_1 + \text{const}$$
 (everywhere)

For Neumann b.c., solⁿ of Lap eqⁿ is "almost unique": <u>unique</u> <u>apart from an additive constant</u>. However, gradients of ψ <u>are</u> unique (if conditions of div th^m are met). So u, v soln is unique.

Non-uniqueness of Poisson eqn [e.g. $\nabla^2 p = F$ where p is pressure and F is a known function of u,v,w] with Neumann b.c. is an important problem for thermodynamic retrieval using u,v,w retrieved from dual-Doppler radar data -- need sounding data of pressure to resolve non-uniqueness problem in this case. [Try working through uniqueness/non-uniqueness result for Poisson eqn for Dirichlet b.c. case and Neumann b.c. case and see what you get.]