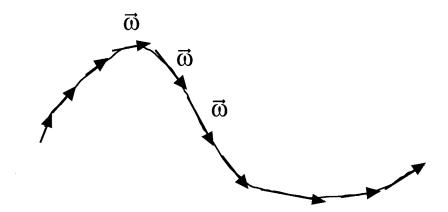
METR 5113, Advanced Atmospheric Dynamics I Alan Shapiro, Instructor Wednesday, 24 Rocktober 2018 (lecture 27)

Kinematics of Vorticity

vorticity
$$\vec{\omega} = \nabla \times \vec{u}$$

A line that is everywhere tangential to the local vorticity vector is a vortex line (or vortex filament).



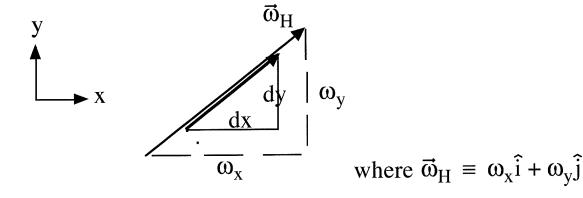
Note: A <u>vortex line</u> is not the same thing as a <u>line vortex</u> ["line vortex" is a vr-vortex or name given to a concentrated vortex -- vorticity concentrated in a small tube-like volume]

ODEs for vortex lines are analogous to ODEs for streamlines. Derive them analytically by expanding out

 $\vec{dx} \times \vec{\omega} = 0$, [for streamlines we expanded out $\vec{dx} \times \vec{u} = 0$]

where $\vec{dx} = dx \hat{i} + dy \hat{j} + dz \hat{k}$ is a chunk of the vortex line.

Or can derive them geometrically by considering the diagram:



so $\frac{dy}{dx} = \frac{\omega_y}{\omega_x}$, similarly: $\frac{dz}{dx} = \frac{\omega_z}{\omega_x}$. Can put them in the form:

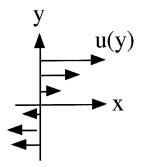
$$\frac{\mathrm{d}y}{\omega_y} = \frac{\mathrm{d}x}{\omega_x} = \frac{\mathrm{d}z}{\omega_z}$$

or can introduce a parameter "s" such that $\frac{dy}{\omega_y} = \frac{dx}{\omega_x} = \frac{dz}{\omega_z} = ds$, from which follows parametric form of odes for the vortex line:

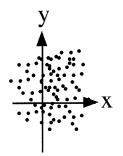
$$\frac{dx}{ds} = \omega_x$$
, $\frac{dy}{ds} = \omega_y$, $\frac{dz}{ds} = \omega_z$

Vortex lines are present whenever there is vorticity in flow (don't need to have a vortex).

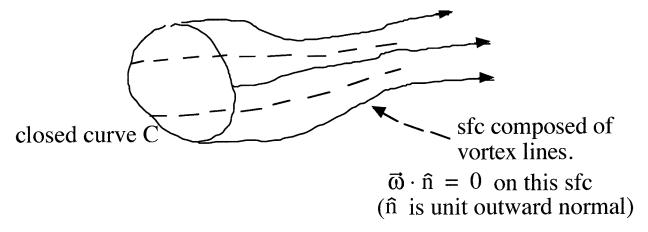
e.g. shear flow u = u(y), v = 0, w = 0



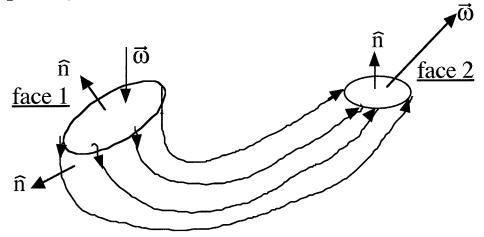
In this case vorticity is all in vertical dirⁿ, $\vec{\omega} = -\frac{\partial u}{\partial y} \hat{k}$ (in $-\hat{k}$ dirⁿ or $+\hat{k}$ dirⁿ) so vortex lines are all in vertical dirⁿ.



Vortex lines passing through any closed curve form a tubular sfc known as a <u>vortex tube</u> [analogous to construction of streamtube from streamlines passing through a closed curve]



Recall $\nabla \cdot \vec{\omega} = 0$ for all flows (done in prob set). $\int \nabla \cdot \vec{\omega} \, dV = 0$ for any fluid volume. In particular, consider the volume occupied by a chunk of a vortex tube.



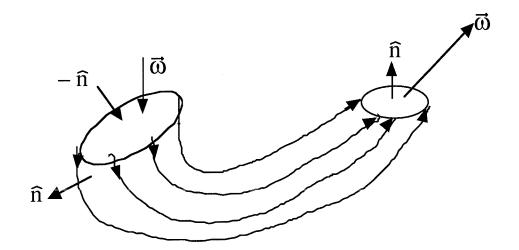
But div thm says $\int \nabla \cdot \vec{\omega} \, dV = \int \vec{\omega} \cdot \hat{n} \, dA$. Since l.h.s. is 0, the r.h.s must be 0. So $\int \vec{\omega} \cdot \hat{n} \, dA = 0$. This area integral is over closed surface bounding chunk of tube (sides + two end faces).

0 on sides of tube

$$\therefore \int \vec{\omega} \cdot \hat{n} \, dA + \int \vec{\omega} \cdot \hat{n} \, dA + \int \overline{\vec{\omega} \cdot \hat{n}} \, dA = 0$$
face 1 face 2 sides

$$\therefore - \int \vec{\omega} \cdot \hat{\mathbf{n}} \, d\mathbf{A} = \int \vec{\omega} \cdot \hat{\mathbf{n}} \, d\mathbf{A}$$
face 1 face 2

$$\therefore \int \vec{\omega} \cdot (-\hat{n}) dA = \int \vec{\omega} \cdot \hat{n} dA$$
face 1 face 2



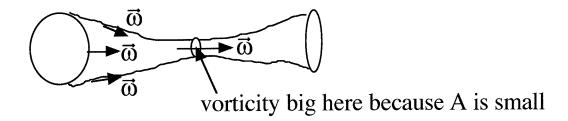
[now use fact that "average = integral divided by interval"]

$$\therefore A_1 \boxed{\frac{1}{A_1} \int \vec{\omega} \cdot (-\hat{n}) dA} = A_2 \boxed{\frac{1}{A_2} \int \vec{\omega} \cdot \hat{n} dA}$$
average inward comp
of vorticity on face 1

average outward comp
of vorticity on face 2

More generally, $A\overline{\omega}$ has <u>same value</u> on any x-section through a given vortex tube. So $\overline{A\overline{\omega} = \text{const}}$ for a vortex tube, where A

is cross-section area through tube and $\overline{\omega}$ is ave vorticity comp \bot to cross-section area. A $\overline{\omega}$ is "strength" of vortex tube. So vortex tube strength is constant -- indep of where cross-section is taken.



Rewrite $A\overline{\omega} = \text{const}$ using Stokes Th^m , get: $\oint \vec{u} \cdot \vec{dl} = \text{const}$. Here the curve is the intersection of the tube and cross-section area. So circulation is the same for any cross-section along vortex tube.

These results are <u>kinematic</u> relations valid at a <u>fixed time</u>. How does vortex tube strength (or circulation) change with time? Need to consider <u>dynamics</u>.

Vorticity and Circulation Dynamics (Ch5 Kundu 1st-6th ed)

Kelvin's Circulation Thm

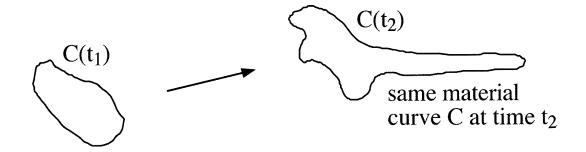
Assume flow is:

- (1) inviscid
- (2) subject to conservative body forces (force can be expressed as gradient of something -- as in gravity force)
- (3) barotropic, $\rho = \rho(p)$
- (4) described in an inertial (non-accelerating) ref frame

Appropriate eqns of motion are Euler eqns:

$$\frac{D\vec{u}}{Dt} = -\frac{1}{\rho} \nabla p + \vec{g}, \quad \text{where } \vec{g} = -\nabla gz$$

Consider an arbitrary <u>closed curve</u> C (arbitrary at a particular time, but once you've defined it, you're stuck with it). Curve is composed of air parcels. Follow curve as it moves around. C is always composed of same parcels -- <u>same material</u> -- it's a material <u>curve</u>.



Let $\Gamma(t) \equiv \oint \vec{u} \cdot \vec{dl}$ be circulation around C.

To see how Γ changes with time, derive a formula for $\frac{D\Gamma}{Dt}$, rate of change of circulation around closed material curve.