METR 5113, Advanced Atmospheric Dynamics I Alan Shapiro, Instructor Monday 29 Rocktober 2017 (lecture 29)

2 handouts: Info about exam2, answers to prob set 4.

Helmholtz theorem [2nd theorem named after him; see lec 13)]

Helmholtz Th^m is valid for same conditions as Kelvin's Th^m. It says: "Vortex lines move with the flow," that is, vortex lines are material lines.

What does it mean? Consider a vortex line at $t = t_1$:

Track the <u>material line</u> coinciding with the vortex line at $t = t_1$. At $t = t_2$, this material line might look like,

Helmholtz Th^m says that since this material line was originally a vortex line, it is still a vortex line. So:

If Helmholtz Th^m were <u>not</u> true (e.g., if diffusion or heating is important) then the material line need not be a vortex line after the initial time:

Modify Kelvin's Th^m for baroclinic flow -- go back to prev eqⁿ (*) but this time the pressure integral does not vanish:

$$\begin{split} \frac{D\Gamma}{Dt} &= -\oint \frac{1}{\rho} \, \nabla p \cdot \vec{dl} \\ &= -\int \left[\nabla \times (\frac{1}{\rho} \, \nabla p) \right] \cdot \hat{n} \, dA \qquad \text{(using Stokes th}^m) \\ &= -\int \left[\nabla \frac{1}{\rho} \times \nabla p \, + \, \frac{1}{\rho} \overline{\nabla \times \nabla p} \right] \cdot \hat{n} \, dA \\ &= -\int \left[\nabla \frac{1}{\rho} \times \nabla p \, + \, \frac{1}{\rho} \overline{\nabla \times \nabla p} \right] \cdot \hat{n} \, dA \end{split}$$

$$\therefore \quad \frac{\mathrm{D}\Gamma}{\mathrm{D}t} = \int \frac{1}{\rho^2} (\nabla \rho \times \nabla p) \cdot \hat{\mathbf{n}} \, \mathrm{d}A$$

If flow was barotropic then rhs would be 0. Why? Because in barotropic flows, isolines of p and ρ coincide so $\nabla \rho$ is parallel to ∇p so their cross product is 0:

In baroclinic flow, isolines of p, ρ are skewed w.r.t. each other:

Example of circulation induced in a baroclinic flow:

Pressure is nearly hydrostatic : ∇p points down $(-\hat{k} \operatorname{dir}^n)$. Density decreases with height. But due to fire it also decreases toward house. So $\nabla \rho \times \nabla p$ points into page.

Consider a material curve in xz plane next to house. Let \hat{n} point out of page (so $d\hat{l}$ goes around counterclockwise -- to keep interior on left) [could have chosen \hat{n} to point into page and your final answer would have same physical meaning...]

$$\therefore (\nabla \rho \times \nabla p) \cdot \hat{\mathbf{n}} < 0$$

$$\therefore \frac{D\Gamma}{Dt} < 0$$

$$\therefore \quad \frac{D}{Dt} \oint \vec{u} \cdot \vec{dl} \, < \, 0$$

Net effect is to generate a flow directed in opposite sense to $d\vec{l}$.

Vorticity Equation

- include friction and baroclinicity, but assume flow is incompressible.

Start w/ Navier-Stokes eqns:

$$\frac{\partial \vec{\mathbf{u}}}{\partial t} \, + \, (\vec{\mathbf{u}} \cdot \nabla) \, \vec{\mathbf{u}} \, = \, -\frac{1}{\rho} \, \nabla p \, + \, \nu \, \nabla^2 \vec{\mathbf{u}} \, + \, \vec{\mathbf{g}}_{-->} \, - \nabla \Pi$$

use vector identity: $(\vec{\mathbf{u}} \cdot \nabla) \vec{\mathbf{u}} = \nabla \frac{\mathbf{q}^2}{2} + \vec{\boldsymbol{\omega}} \times \vec{\mathbf{u}}$

$$\therefore \frac{\partial \vec{\mathbf{u}}}{\partial t} + \nabla \left(\frac{\mathbf{q}^2}{2} + \Pi\right) + \vec{\boldsymbol{\omega}} \times \vec{\mathbf{u}} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{\mathbf{u}}$$

Take $\nabla \times eq^n$. Recall that $\nabla \times \nabla(scalar) = 0$.

$$\therefore \frac{\partial \vec{\omega}}{\partial t} + \sqrt{\nabla \times (\vec{\omega} \times \vec{u})} = -\nabla \frac{1}{\rho} \times \nabla p - \frac{1}{\rho} \sqrt{\nabla \times \nabla p} + \nu \nabla^2 \vec{\omega}$$

$$\nabla \times (\vec{\omega} \times \vec{u}) = \vec{\omega} \sqrt{\nabla \cdot \vec{u}} - \vec{u} \sqrt{\nabla \cdot \vec{\omega}} + (\vec{u} \cdot \nabla) \vec{\omega} - (\vec{\omega} \cdot \nabla) \vec{u}$$

$$0 \text{ for } 0 \text{ for } 0 \text{ for } 1 \text{ incomp flows all flows}$$

The result is the <u>vorticity eqn</u>:

$$\frac{\partial \vec{\omega}}{\partial t} + (\vec{u} \cdot \nabla) \vec{\omega} = (\vec{\omega} \cdot \nabla) \vec{u} + \frac{1}{\rho^2} \nabla \rho \times \nabla \rho + \nu \nabla^2 \vec{\omega}$$
local advection tilting and baroclinic diffusion deriv of vort stretching term of vort of vort

Baroclinic term acts mostly in horiz dirⁿ (contributes to $\partial \omega_x/\partial t$, $\partial \omega_y/\partial t$) because $\nabla p \approx -\rho g \, \hat{k}$ so $\nabla \rho \times \nabla p$ is mostly $\perp \, \hat{k}$.

Let's see how baroclinic term works. Suppose density varies in horizontal. Consider 2 neighboring parcels on an isobar. Consider pgf per unit volume acting on these parcels.

Analogous to kicking heavy and light soccer balls w/ equal force (soccer balls represent air parcels). Light ball accelerates more. $[\vec{F} = m\vec{a} : \vec{a} = \vec{F}/m \text{ so for fixed } \vec{F} \text{ , bigger m means smaller } \vec{a} \text{]}$

Baroclinic effect generates <u>horizizontal vorticity</u> at leading edge of cold outflows (gust fronts), cold-fronts, and on edges of clouds and t-storms.