METR 5113, Advanced Atmospheric Dynamics I Alan Shapiro, Instructor Wednesday, 31 Rocktober 2018 (lecture 30)

- 1 handout: vort tilting in a thunderstorm updraft

Vorticity eqn (with all terms except local deriv put on rhs):

$$\frac{\partial \vec{\omega}}{\partial t} \, = \, - \left(\vec{\mathbf{u}} \cdot \nabla \right) \, \vec{\omega} \, + \, \left(\vec{\omega} \cdot \nabla \right) \, \vec{\mathbf{u}} \, + \, \frac{1}{\rho^2} \nabla \rho \times \nabla p \, + \, \nu \, \nabla^2 \vec{\omega}$$

Vertical vorticity eqn

Take \hat{k} · vort eqn, get:

$$\frac{\partial \zeta}{\partial t} \, = \, - \left(\vec{\mathbf{u}} \cdot \nabla \right) \, \zeta \ \, + \ \, \left(\vec{\boldsymbol{\omega}} \cdot \nabla \right) \, \mathbf{w} \ \, + \, \frac{1}{\rho^2} \, \hat{\mathbf{k}} \cdot \left(\nabla \rho \times \nabla p \right) \, + \, \nu \, \nabla^2 \zeta \, \label{eq:delta-to-point}$$

Each term on rhs <u>contributes</u> to $\partial \zeta/\partial t$. Examine contributions separately.

Discuss vorticity advection term $-(\vec{u} \cdot \nabla) \zeta$. [done on board] Now look at tilting and stretching term $(\vec{\omega} \cdot \nabla) w$.

$$(\vec{\omega} \cdot \nabla) w = \begin{bmatrix} \omega_x \frac{\partial w}{\partial x} + \omega_y \frac{\partial w}{\partial y} \end{bmatrix} + \begin{bmatrix} \zeta \frac{\partial w}{\partial z} \end{bmatrix}$$
tilting terms stretching

stretching term: $\zeta \partial w/\partial z$.

Suppose $\partial w/\partial z > 0$ and $\zeta > 0$ \therefore $\zeta \partial w/\partial z > 0$ \therefore $\partial \zeta/\partial t > 0$ \therefore $\zeta \uparrow$ in value. And since $\zeta > 0$, ζ increases in magnitude.

If $\partial w/\partial z > 0$ but $\zeta < 0$ then $\zeta \partial w/\partial z < 0$ $\therefore \partial \zeta/\partial t < 0$ $\therefore \zeta \downarrow$ in value. And since $\zeta < 0$, ζ still increases in magnitude.

Recall that linear strain rate in z direction, $\frac{1}{\delta z} \frac{D\delta z}{Dt}$, is related to flow by: $\frac{1}{\delta z} \frac{D\delta z}{Dt} = \frac{\partial w}{\partial z}$. So positive $\frac{\partial w}{\partial z}$ stretches an air parcel. $\frac{\partial w}{\partial z} > 0$ means that w might look like:

So:

As parcel stretches, its mass is brought in toward axis of rotation, and spins faster (ζ in magnitude).

In calculation above we showed stretching $(\partial w/\partial z > 0)$ increases magnitude of ζ regardless of sign of ζ . Similarly, you can show compression $(\partial w/\partial z < 0)$ reduces mag of ζ regardless of sign of ζ .

one of the tilting terms: $\omega_x \, \partial w/\partial x$. Suppose $\omega_x > 0$ and $\partial w/\partial x > 0$. Then $\omega_x \, \partial w/\partial x > 0$. $\therefore \, \partial \zeta/\partial t > 0$. So $\zeta \uparrow$ in value.

w field rotates initially horiz vortex line, generates positive ζ :

horiz vorticity gets "tilted" into vertical dirⁿ. A rearrangement of vorticity.

Similar interpretation for $\omega_y \partial w/\partial y$ tilting term.

e.g., generation of vertical vorticity in thunderstorms grown in a sheared environment. Let the environmental (mean) winds be: $\bar{u} = \bar{u}(z), \quad \bar{v} = 0, \quad \bar{w} = 0$.

Now consider an updraft growing in that environment. In plan view:

environmental vortex lines

South of updraft center, vortex lines get tilted upward \therefore pos ζ generated. North of updraft center get neg ζ generated.

Looking to the east at the updraft:

The tilting is consistent with Helmholtz thm.

Note: in 2D flow, tilting and stretching mechanisms don't operate. Why? If u = u(x, y), v = v(x, y), w = 0, then vort is all in vertical: $\vec{\omega} = (\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y})\hat{k}$: no horiz vort available for tilting into vertical. Also, since w = 0, $\frac{\partial w}{\partial z} = 0$ so $\zeta \frac{\partial w}{\partial z} = 0$ so no stretching. Similarly, can show that tilting/stretching terms are also 0 in the x and y component vorticity equations.

Ertel's Potential Vorticity Theorem

Assume flow is inviscid, but let it be <u>baroclinic</u> and <u>compressible</u>. Mass consⁿ eqⁿ for compressible flow is:

$$\frac{\partial \rho}{\partial t} + \vec{\mathbf{u}} \cdot \nabla \rho + \rho \nabla \cdot \vec{\mathbf{u}} = 0$$

Eqns of motion are Euler eqns (since flow is inviscid):

$$\frac{\partial \vec{\mathbf{u}}}{\partial t} \, + \, (\vec{\mathbf{u}} \cdot \nabla) \, \vec{\mathbf{u}} \, = \, -\, \frac{1}{\rho} \, \nabla p \, - \, \nabla \Pi$$

Taking $\nabla \times$ Euler eqns and using the identities for $\nabla \times (\vec{\omega} \times \vec{u})$ and $\nabla \cdot \vec{\omega}$, we get:

$$\frac{\partial \vec{\omega}}{\partial t} + (\vec{u} \cdot \nabla) \vec{\omega} + \vec{\omega} \underbrace{\nabla \cdot \vec{u}}_{\text{not } 0!} = (\vec{\omega} \cdot \nabla) \vec{u} + \frac{1}{\rho^2} \nabla \rho \times \nabla \rho - \frac{1}{\rho} (\frac{\partial \rho}{\partial t} + \vec{u} \cdot \nabla \rho)$$

 \div by ρ and re-arrange:

$$(A) \quad \frac{1}{\rho} \frac{\partial \vec{\omega}}{\partial t} - \frac{\vec{\omega}}{\rho^2} \frac{\partial \rho}{\partial t} + \frac{1}{\rho} \left(\vec{u} \cdot \nabla \right) \vec{\omega} - \frac{\vec{\omega}}{\rho^2} \vec{u} \cdot \nabla \rho$$

$$= \left(\frac{\vec{\omega}}{\rho} \cdot \nabla \right) \vec{u} + \frac{1}{\rho^3} \nabla \rho \times \nabla \rho$$

scratch paper:

$$\frac{\partial}{\partial t} \left(\frac{1}{\rho} \right) = \frac{\partial}{\partial t} \rho^{-1} = -\frac{1}{\rho^2} \frac{\partial \rho}{\partial t} \qquad \text{Similarly,} \quad \nabla \left(\frac{1}{\rho} \right) = -\frac{1}{\rho^2} \nabla \rho$$

so lhs of (A) can be rewritten as:

$$\begin{split} \left(\frac{1}{\rho}\right) & \frac{\partial \vec{\omega}}{\partial t} + \vec{\omega} \frac{\partial}{\partial t} \left(\frac{1}{\rho}\right) + \left(\frac{1}{\rho}\right) (\vec{u} \cdot \nabla) \vec{\omega} + \vec{\omega} (\vec{u} \cdot \nabla) \left(\frac{1}{\rho}\right) \\ & = \frac{\partial}{\partial t} \left(\frac{\vec{\omega}}{\rho}\right) + (\vec{u} \cdot \nabla) \left(\frac{\vec{\omega}}{\rho}\right) \\ & = \frac{D}{Dt} \left(\frac{\vec{\omega}}{\rho}\right) \end{split}$$

So (A) becomes:

(B)
$$\overline{\frac{D}{Dt} \left(\frac{\vec{\omega}}{\rho} \right)} = \left(\frac{\vec{\omega}}{\rho} \cdot \nabla \right) \vec{u} + \frac{1}{\rho^3} \nabla \rho \times \nabla p$$