METR 5113, Advanced Atmospheric Dynamics I
Alan Shapiro, Instructor
Monday, 26 November 2018 (lecture 39)

Surface gravity waves

Consider 2-D motion in the x-z plane of a liquid w/ a free
surface (e.g. air/sea interface) [a pool of cold air underlying
warm air is similar but more complicated]
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- assume disturbance is "infinitesimal", i.e., a 1S so small that:
a<<H (a/H<<1)
and a<<A (a/A<<]1)

Because of this, nonlinear accel® terms are very small compared
to local derivs (products of small quantities are really small)

-- neglect friction

-~ assume T << rotation period of earth, or equivalently ® >> f



. can safely neglect Coriolis force.

-~ assume fluid was initially at rest (so irrotational) and waves
created irrotationally. So from Kelvin's Th™, the flow will

always be irrot. So @(t) = 0

u(t) = Vo(t)

-- assume flow is incompressible, V-G = 0
Substituting in i = V¢ we get:

V-Vo =0

. V% =0 Laplace's egn.
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Need b.c.s to solve it.

At bottom: impermeability condn:
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On top (free surface): a kinematic b.c. and a dynamic b.c.



Top Kinematic b.c.: A fluid element on free sfc remains on that
sfc no matter how sfc moves or deforms. .". Zparcel on sfc =M
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sfc moving upward: Stationary sfc with u>0
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For infinitesimal waves, neglect products of small quantities
(nonlinear terms). Neglect u on/ox.
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L 9% _om on z =n(x,t) [still nonlinear: 1 is affected by flow]
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Exapnd l.h.s. in a Taylor series about z = 0:
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neglect these terms since 1 is small
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gﬁg = %% onz = 0| Linearized kinematic b.c. on free sfc.

[Neglected a nonlinear term and put b.c. at z=0 instead of z=n]

Dynamic b.c. on free surface: pressure is continuous across
air/sea interface. So pressure on liquid side of interface = atm

pressure.
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[We implicitly used dynamic b.c. in the open barrel problem]

Translate this b.c. into a b.c. on ¢, using Bernoulli's eqn for
unsteady, irrot flow:
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Apply it on free sfc z=n (liquid side), w/ p=patm, and neglect q2:

d¢ patm _—
3t + D + gn =C
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5 + gn = (C ———p—) = const

Set const = 0. [Flow doesn't care about it. Equivalently, define
Onew =Pold — const t, and plug into above eqn. The const cancels

out, but since i = V¢ and V¢,.,, = Vb4 , the flow is unchanged.]
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Taylor exp about z = 0:

[neglect since 1 is small]
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. linearized dynamic free sfc b.c. IS:
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Want to solve = 0 subject to the above b.c.

Consider a "wavy" pattern for n: 1 = a cos(kx - ot)

From either top b.c., suspect ¢ =< sin(kx-wt) w/ a z dependence.
Try: ¢ = f(z) sin(kx — wt) [see if it works]

Plug into Laplace's eqn, get:
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Trial soln for f: f= emz, Plug into ode, get:



m2e™ — k%em = 0, divide by e™
m2- k% = 0
~ m=kor-k
So general soln for f 1s:

f=Aekz+ Beke

O = (A ek + B e“kz) sin(kx — ot)



