METR 5113, Advanced Atmospheric Dynamics I Alan Shapiro, Instructor Monday, 26 November 2018 (lecture 39)

Surface gravity waves

Consider 2-D motion in the x-z plane of a liquid w/ a free surface (e.g. air/sea interface) [a pool of cold air underlying warm air is similar but more complicated]

-- assume disturbance is "infinitesimal", i.e., a is so small that:

and
$$a \ll \lambda (a/\lambda \ll 1)$$

Because of this, nonlinear accelⁿ terms are very small compared to local derivs (products of small quantities are really small)

- -- neglect friction
- -- assume T << rotation period of earth, or equivalently $\omega >> f$

- : can safely neglect Coriolis force.
- -- assume fluid was initially at rest (so irrotational) and waves created irrotationally. So from Kelvin's Th^m , the flow will always be irrot. So $\vec{\omega}(t) = 0$

$$\therefore \quad \vec{\mathbf{u}}(t) = \nabla \phi(t)$$

-- assume flow is incompressible, $\nabla \cdot \vec{u} = 0$

Substituting in $\vec{\mathbf{u}} = \nabla \phi$ we get:

$$\nabla \cdot \nabla \phi = 0$$

∴ $\nabla^2 \phi = 0$ Laplace's eqn.

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial z^2} = 0$$

Need b.c.s to solve it.

At bottom: <u>impermeability cond</u>n:

$$\therefore \quad \frac{\partial \phi}{\partial z} = 0 \text{ at } z = -H$$

On top (free surface): a kinematic b.c. and a dynamic b.c.

Top Kinematic b.c.: A fluid element on free sfc remains on that sfc no matter how sfc moves or deforms. \therefore $z_{parcel \text{ on sfc}} = \eta$

$$\therefore w_{\text{parcel on sfc}} = \frac{D}{Dt} z_{\text{parcel on sfc}} = \frac{D\eta}{Dt} = \frac{\partial \eta}{\partial t} + u \frac{\partial \eta}{\partial x}$$

$$\therefore \frac{\partial \phi}{\partial z} = \frac{\partial \eta}{\partial t} + u \frac{\partial \eta}{\partial x} \quad \text{on } z = \eta(x,t)$$

sfc moving upward:

Stationary sfc with u>0

For infinitesimal waves, neglect products of small quantities (nonlinear terms). Neglect u $\partial \eta / \partial x$.

$$\therefore \frac{\partial \phi}{\partial z} = \frac{\partial \eta}{\partial t} \quad \text{on } z = \eta(x,t) \quad \text{[still nonlinear: } \eta \text{ is affected by flow]}$$

Exapnd 1.h.s. in a Taylor series about z = 0:

$$\frac{\partial \phi}{\partial z}\Big|_{z=\eta} = \frac{\partial \phi}{\partial z}\Big|_{z=0} + \frac{\partial}{\partial z} \left(\frac{\partial \phi}{\partial z}\right)\Big|_{z=0} \eta + \dots$$
[
neglect these terms since η is small

$$z=0$$
 $z=\eta$

$$\therefore \frac{\partial \phi}{\partial z} = \frac{\partial \eta}{\partial t} \text{ on } z = 0$$
 Linearized kinematic b.c. on free sfc. [Neglected a nonlinear term and put b.c. at z=0 instead of z= η]

<u>Dynamic b.c.</u> on free surface: pressure is <u>continuous</u> across air/sea interface. So pressure on liquid side of interface = atm pressure.

[We implicitly used dynamic b.c. in the open barrel problem]

Translate this b.c. into a b.c. on ϕ , using Bernoulli's eqⁿ for unsteady, irrot flow:

$$\frac{\partial \phi}{\partial t} + \frac{q^2}{2} + \frac{p}{\rho} + gz = C$$
 (same const everywhere)

Apply it on free sfc z= η (liquid side), w/p= p_{atm} , and neglect q^2 :

$$\therefore \frac{\partial \phi}{\partial t} + \frac{p_{atm}}{\rho} + g\eta = C$$

$$\therefore \frac{\partial \phi}{\partial t} + g\eta = \left(C - \frac{p_{atm}}{\rho}\right) = const$$

Set const = 0. [Flow doesn't care about it. Equivalently, define $\phi_{\text{new}} = \phi_{\text{old}} - \text{const t}$, and plug into above eqn. The const cancels out, but since $\vec{u} = \nabla \phi$ and $\nabla \phi_{\text{new}} = \nabla \phi_{\text{old}}$, the flow is unchanged.]

$$\therefore \quad \frac{\partial \phi}{\partial t} + g\eta = 0 \quad \text{at } z = \eta$$

Taylor exp about z = 0:

 $\therefore \frac{\partial \phi}{\partial t}\Big|_{z=n} = \frac{\partial \phi}{\partial t}\Big|_{z=0} + \frac{\partial}{\partial z} \left(\frac{\partial \phi}{\partial t}\right)\Big|_{z=0} \eta + \text{h.o.t.}$

:. linearized dynamic free sfc b.c. is:

$$\frac{\partial \Phi}{\partial t} + g\eta = 0$$
 at $z = 0$

Want to solve $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial z^2} = 0$ subject to the above b.c.

Consider a "wavy" pattern for η : $\eta = a \cos(kx - \omega t)$

From either top b.c., suspect $\phi \propto \sin(kx-\omega t)$ w/ a z dependence.

Try: $\phi = f(z) \sin(kx - \omega t)$ [see if it works]

Plug into Laplace's eqn, get:

$$-k^{2} f \sin(kx - \omega t) + \frac{d^{2} f}{dz^{2}} \sin(kx - \omega t) = 0$$

 $\therefore \frac{d^2f}{dz^2} - k^2f = 0$ a linear const coeff homogeneous ode

Trial soln for f: $f = e^{mz}$. Plug into ode, get:

$$m^2 e^{mz} - k^2 e^{mz} = 0$$
, divide by e^{mz}
$$m^2 - k^2 = 0$$

$$\therefore$$
 m = k or - k

So general soln for f is:

$$f = A e^{kz} + B e^{-kz}$$

$$\therefore \quad \phi = \left(A e^{kz} + B e^{-kz} \right) \sin(kx - \omega t)$$