METR 5113, Advanced Atmospheric Dynamics I Alan Shapiro, Instructor Monday, 27 August 2018 (lecture 4)

Reminder: please fill out info sheet about exam days/times

A 2^{nd} order tensor S is symmetric if: $S_{ij} = S_{ji}$. It has at most 6 distinct elements.

e.g.
$$S = \begin{pmatrix} 3 & 4 & 5 \\ 4 & 1 & 6 \\ 5 & 6 & 2 \end{pmatrix}$$

A 2^{nd} order tensor A is antisymmetric if: $A_{ij} = -A_{ji}$. It has at most 3 distinct elements since all diagonal elements are 0:

$$A_{11} = -A_{11}$$
 add A_{11} to both sides

$$2 A_{11} = 0$$

$$\therefore A_{11} = 0$$

Similarly $A_{22} = 0$, $A_{33} = 0$.

e.g.
$$A = \begin{pmatrix} 0 & 4 & 5 \\ -4 & 0 & -6 \\ -5 & 6 & 0 \end{pmatrix}$$

So, a 2nd order antisymmetric tensor has same number of distinct elements as a vector in 3-D space: 3. Can associate the elements of an antisymmetric tensor w/ comps of a vector, and vice versa.

Let
$$\vec{\omega} = \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix}$$
 be a vector.

Define an antisym tensor R associated with $\vec{\omega}$ to be:

$$R_{ij} = -\epsilon_{ijk} \, \omega_k \qquad \text{or:} \qquad R = \begin{pmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{pmatrix}$$

Any 2nd order tensor B can be written as the sum of a sym tensor and an antisym tensor:

$$B_{ij} = S_{ij} + A_{ij}$$
 arbitrary sym antisym

Proof:

$$\begin{split} \mathbf{B}_{ij} &= \frac{1}{2} \, \mathbf{B}_{ij} &+ \frac{1}{2} \, \mathbf{B}_{ij} \\ &= \frac{1}{2} \left(\mathbf{B}_{ij} + \mathbf{B}_{ji} \right) &+ \frac{1}{2} \left(\mathbf{B}_{ij} - \mathbf{B}_{ji} \right) \\ &\quad \quad \text{Call whole thing S}_{ij} &\quad \quad \text{Call whole thing A}_{ij} \\ &\quad \quad \text{Need to show it's symmetric} &\quad \quad \text{Need to show it's antisymmetric} \end{split}$$

$$S_{ij} = \frac{1}{2} (B_{ij} + B_{ji})$$
 rename the free indices, get:

$$S_{ji} = \frac{1}{2} \left(B_{ji} + B_{ij} \right) = \frac{1}{2} \left(B_{ij} + B_{ji} \right) = S_{ij}$$
 So, yes! S is sym.

$$A_{ij} = \frac{1}{2} (B_{ij} - B_{ji})$$
 rename the free indices, get:

$$A_{ji} = \frac{1}{2} \left(B_{ji} - B_{ij} \right) = \frac{1}{2} \left(-B_{ij} + B_{ji} \right) = -\frac{1}{2} \left(B_{ij} - B_{ji} \right) = -A_{ij}$$
swap order of terms factor out minus sign

So yes! A is antisym.

Contraction: 2 free indices in a tensor eqn are set equal to each other (so become a pair of dummy indices). So we're summing!

e.g. Consider 3rd order tensor eqⁿ $A_{ijk} = u_i \frac{\partial u_k}{\partial x_j}$. Contracting j, k yields $A_{ijj} = u_i \frac{\partial u_j}{\partial x_j}$, a 1st order tensor eqⁿ. Contracting i, j in

 A_{ijk} yields $A_{iik} = u_i \frac{\partial u_k}{\partial x_i}$, a different 1st order tensor eqn.

A contraction of a 2^{nd} order tensor yields a <u>trace</u> (sum of diag elements): $B_{ii} = B_{11} + B_{22} + B_{33}$. A <u>scalar</u> (no free indices)

Consider velocity gradient tensor: $\frac{\partial u_i}{\partial x_i}$. A contraction of this

2nd order tensor is the divergence of the velocity field:

$$\frac{\partial u_i}{\partial x_i} = \frac{\partial u_1}{\partial x_1} + \frac{\partial u_2}{\partial x_2} + \frac{\partial u_3}{\partial x_3} = \nabla \cdot \vec{u}$$

Contracting 2 indices reduces order of a tensor by 2: 3rd order tensor -----contraction----> 1st order tensor (vector) 2nd order tensor -----contraction----> scalar A special double-contraction. Consider 4th order tensor arising from product of symmetric 2^{nd} order tensor τ w/ antisym 2^{nd} order tensor B, τ_{ij} B_{kl}. Contract i,k and j,l indices, get the scalar τ_{ij} B_{ij}. Can show it's 0:

$$\tau_{ij} B_{ij} = \tau_{ji} B_{ij}$$
 since τ is sym
$$= -\tau_{ji} B_{ji}$$
 since B is antisym
$$= -\tau_{ij} B_{ij}$$
 renaming dummy indices (i --> j, j --> i)

Add $\tau_{ij} B_{ij}$ to both sides.

$$\therefore \qquad 2\,\tau_{ij}\,B_{ij} = 0$$

$$\therefore \qquad \tau_{ij} B_{ij} = 0$$

 \therefore Doubly-contracted product of sym tensor w/ antisym tensor is 0. [Each comp of τ is multiplied by corresponding comp of B and the products are summed. Analogous to integrating product of an even and an odd function over an even interval -- get 0.]

Recall that for any arbitrary 2nd order tensor E that,

$$E_{ij} = S_{ij} + A_{ij}$$
sym antisym

Consider doubly contracted product of E w/ sym tensor τ :

$$E_{ij}\tau_{ij} = S_{ij}\tau_{ij} + \overline{A_{ij}\tau_{ij}} -->0$$
 (sym times antisym = 0)

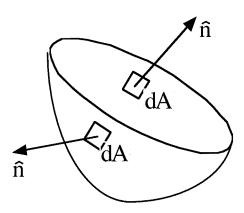
Only symmetric part of E survives in the product:

$$\therefore E_{ij}\tau_{ij} = \frac{1}{2} (E_{ij} + E_{ji})\tau_{ij}$$

Integral Theorems

Gauss Theorem.

Consider a volume V bounded by closed surface A w/ local unit outward normal n. Outward-directed area element is n dA. [closed surface -- e.g., a balloon, but NOT a cup]



and consider a tensor Q of any order such that Q and it's derivs are continuous in V. Then Gauss Thm says:

$$\int_{V} \frac{\partial Q}{\partial x_{i}} dV = \int_{A} Q n_{i} dA$$

volume integral area integral (boundary integral)

Here $n_i dA = \hat{e}_i \cdot \hat{n} dA$, the projection of $\hat{n} dA$ in the $\hat{e}_i dir^n$.

Gauss Th^m is a 3-D version of Fundamental Th^m of Integral Calculus:

$$\int_{a}^{b} \frac{dG}{dx} dx = G(b) - G(a)$$

Suppose Q is a vector w/ components Q_j , then:

$$\int_{V} \frac{\partial Q_{j}}{\partial x_{i}} dV = \int_{A} Q_{j} n_{i} dA \qquad [9 \text{ eqns}]$$

Contract i, j indices (sum 3 of the 9 eqns), get:

$$\int_{V} \frac{\partial Q_{i}}{\partial x_{i}} dV = \int_{A} Q_{i} n_{i} dA \qquad \text{or in vector form:}$$

$$\int_{V} \nabla \cdot \vec{Q} \, dV = \int_{A} \vec{Q} \cdot \hat{n} \, dA \quad \text{Divergence Th}^{m}$$

Net divergence of \vec{Q} summed in a volume = Net outflux of \vec{Q} through the surface bounding that volume