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Alan Shapiro, Instructor
Wednesday, 5 December 2018 (lecture 43)

- Please fill out your online course evaluation!

Internal Waves in a Continuously Stratified Fluid

- Suppose mean density p(z) decreases continuously w/ height.

- Neglect friction, nonlinear terms and Coriolis force.

Work w/ linearized inviscid Boussinesq eqns of motion:
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Thermodynamic energy egl for a non-diffusive liquid:
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Define pert from mean density:

p’=p-p(z). Sop=p"+p2)
- So thermo eqn becomes:
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linearize it, get:
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Since p” = p-p(z) = po+p —P(2) , we see that agt = aapt :

So linearized thermo energy eqn becomes:
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Eqns (1) - (5) are 5 eqns in 5 unknowns. Let's get 1 eqn for just
w. Start by eliminating u, v.

Take 9/9x (1) + d/dy (2):
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To eliminate p', take d/0t (3):
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Eqns (6) and (7) are two eqns in two unknowns. To eliminate
p' from (6) and (7), take V%I (7):
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linear homogeneous PDE.

Examine simplest case, where N(z) = const. [If N is not constant
but waves have wavelength that is much smaller than vertical
scale over which N changes appreciably then waves behave as if
N was constant. In this case we can approximate N as constant
and refer to the waves as "small scale internal gravity waves"]

So, with N = const the pde has const coefficients. Try a plane
wave solution:
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W =
K=ki+ 1] + mk is wavenumber vector.
ky=ki+ 1] is horizontal wavenumber vector.
K =ky + mk

K| = vkZ + 1% + m2.

ky = IEH| = Vk2 + 12,
Plug expression for w into internal wave eqn, get:
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If dp/dz < O (statically stable case) then N2> 0 and ® = NI—I_—g—I—|

is a real number. So e! K-X-00 55 propagating wave. If
dp/dz > O (statically unstable case), ® would be imaginary and

el K-X-00 ¢ould blow up exponentially with t.



