METR 5113, Advanced Atmospheric Dynamics I Alan Shapiro, Instructor Wednesday, 29 August 2018 (lecture 5)

Stokes Thm

Consider an arbitrary <u>closed</u> curve C and an <u>open sfc A</u> in 3-D space bounded by C. (open sfc means a sfc not enclosing any volume, so a cup is okay but NOT a balloon).

e.g. possible open surfaces A attached to this same curve C:

Let one side of sfc be "outside". \hat{n} is unit outward normal vector. \vec{ds} is element of C. Orientation of \vec{ds} : if you walk along C in direction of \vec{ds} with head in direction of \hat{n} , the sfc is to your left.

can have up as outside or down as outside [either way is fine, but stick to your choice]

And consider any vector field \vec{u} with continuous derivatives in A (isolated singularities are allowed). Then <u>Stokes Thm says</u>:

$$\int_{A} (\nabla \times \vec{u}) \cdot \hat{n} \, dA = \oint_{C} \vec{u} \cdot \vec{ds}$$
area integral line integral

Can modify Stokes Th^m to exclude holes:

A' (shaded area) excludes the hole. The following closed curve C' encloses A' so we can apply Stokes th^m to C', A':

So we can apply Stokes Thm to area A' bounded by C':

$$\begin{split} \int_{A'} \left(\nabla \times \vec{u} \right) \cdot \hat{n} \, dA' &= \oint_{C_1} \vec{u} \cdot \vec{ds} \\ &= \oint_{C_1} \vec{u} \cdot \vec{ds} + \int_{C_2} \vec{u} \cdot \vec{ds} + \oint_{C_3} \vec{u} \cdot \vec{ds} + \underbrace{\int_{C_4} \vec{u} \cdot \vec{ds}}_{\text{clockwise}} \\ &= \underbrace{\min_{\text{minus}} C_2 \text{ integral}}_{\text{since } \vec{ds}_{C_4} = -\vec{ds}_{C_2}} \\ &= \oint_{C_1} \vec{u} \cdot \vec{ds} + \oint_{C_3} \vec{u} \cdot \vec{ds} \\ &= \underbrace{\int_{C_1} \vec{u} \cdot \vec{ds}}_{\text{counter-clockwise}} \\ &= \underbrace{\int_{C_3} \vec{u} \cdot \vec{ds}}_{\text{clockwise}} \\ &= \underbrace{\int_{C_3} \vec{u}$$

Kinematics (Ch. 3)

Kinematics: study of motion w/out regard for underlying forces.

Lagrangian Description

Describe motion of individual fluid elements (parcels, blobs, etc.)

blob A at
$$t = t_0$$
 blob A at $t = t_1$

Rather than refer to blobs as A or B, refer to them by their position \vec{x}_0 at initial time t_0 .

The blob that was at \vec{x}_0 at time t_0 is now (time t) at the posⁿ $\vec{x}(\vec{x}_0,t)$, with velocity $\vec{u}(\vec{x}_0,t)$, and temp $T(\vec{x}_0,t)$.

In Lagⁿ description, \vec{x} is a dependent variable. So are velocity and temperature, etc. But t and \vec{x}_0 are independent variables.

<u>Trajectory (pathline)</u>: curve traced out by tip of the posⁿ vector of a fluid blob, $\vec{x}(\vec{x}_0, t)$ over a period of time.

[can redraw diagram with dif coord system (dif origin) to show that even though posⁿ vectors are dif in dif coord systems, the curve traced out by tip of posⁿ vectors doesn't change]

Differential equations for trajectories:

$$\frac{d\vec{x}}{dt} = \vec{u}(\vec{x}_0, t)$$

or:
$$\frac{d\vec{x}}{dt} = \vec{u}(t)$$
 [\vec{x}_0 is implied]

or:
$$\frac{dx_i}{dt} = u_i(t)$$

or:
$$\frac{dx}{dt} = u(t)$$
, $\frac{dy}{dt} = v(t)$, $\frac{dz}{dt} = w(t)$.

If you know parcel's velocity as a f^n of time then can get traj by integrating these eqns. The consts of integration can be fixed in terms of the initial parcel location \vec{x}_0 .

The rate of change of any variable F (e.g. temperature) for an infinitesimal blob is usually written as: $\frac{dF}{dt}$ or $\frac{DF}{Dt}$. This is the

total derivative of F.

material "

substantial '

individual "

particle '

Eulerian Description

Describe motion at <u>fixed locations</u> \vec{x} rather than following blobs. \vec{x} and t are treated as independent variables.

e.g., Oklahoma mesonet stations yield Eulerian data: u, v, T as functions of time at fixed locations, NOT following blobs.

[On board consider case of a cold front sliding through to the east without diabatic effects. Temp of parcels is conserved but temp decreases with time at fixed points.]