METR 5113, Advanced Atmospheric Dynamics I Alan Shapiro, Instructor 31 August 2018 (lecture 6)

2 handouts: Prob set 1 answers. Streamlines vs trajectories

Kinematics (continued)

Can express DF/Dt (a Lagrangian concept) in <u>Eulerian notation</u>. At time t a blob is at \vec{x} with F value of $F(\vec{x}, t)$. A short time Δt later, same blob is at $\vec{x} + \Delta \vec{x}$ with an F value $F(\vec{x} + \Delta \vec{x}, t + \Delta t)$. The $\Delta \vec{x}$ and Δt are <u>related</u> by: $\Delta \vec{x} = \vec{u} \Delta t$ (in limit $\Delta t \to 0$), or $\Delta x_i = u_i \Delta t$. The change in F of the blob over time interval Δt is:

$$\Delta F = F(\vec{x} + \vec{\Delta x}, t + \Delta t) - F(\vec{x}, t)$$

So we can write the total derivative of F as,

$$\frac{DF}{Dt} \equiv \lim_{\Delta t \to 0} \frac{\Delta F}{\Delta t} = \lim_{\Delta t \to 0} \frac{F(\vec{x} + \vec{\Delta x}, t + \Delta t) - F(\vec{x}, t)}{\Delta t}$$

$$= \lim_{\Delta t \to 0} \frac{F(\vec{x}, t) + \frac{\partial F}{\partial x_i} \Delta x_i}{\Delta t} + \frac{\partial F}{\partial t} \Delta t + \text{higher order terms} - F(\vec{x}, t)}{\Delta t}$$

$$\therefore \frac{\overline{DF}}{Dt} = \frac{\partial F}{\partial t} + u_i \frac{\partial F}{\partial x_i}$$

or:
$$\frac{DF}{Dt} = \frac{\partial F}{\partial t} + \vec{u} \cdot \nabla F$$
total local advection deriv term
$$(*)$$

L.h.s. is a Lagrangian expression, r.h.s. is an Eulerian expression.

Note: if a measurement device (e.g., thermometer) is on a moving platform (e.g. car or plane) then the time rate of change of F as measured by that device can be expressed as:

$$\frac{DF}{Dt}_{device} = \frac{\partial F}{\partial t} + \vec{u}_{device} \cdot \nabla F$$

Setting $F = u_i$ in (*) yields an expression for the acceleration:

$$\frac{Du_{j}}{Dt} = \frac{\partial u_{j}}{\partial t} + u_{i}\frac{\partial u_{j}}{\partial x_{i}} \qquad [j = 1, 2 \text{ or } 3]$$

or,
$$\frac{\mathrm{Du}_{\,\mathrm{j}}}{\mathrm{Dt}} = \frac{\partial \mathrm{u}_{\,\mathrm{j}}}{\partial \mathrm{t}} + (\vec{\mathrm{u}} \cdot \nabla) \mathrm{u}_{\,\mathrm{j}}$$

or in vector form:

$$\frac{D\vec{u}}{Dt} = \frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla) \vec{u}$$

Acceleration is <u>linear</u> in Lagⁿ description but <u>nonlinear</u> in Eulerian description. This inertial nonlinearity makes analytic solutions of eq^{ns} of motion in Eulerian description difficult (p.g.f. and diffusion make analytic sol^{ns} difficult in Lagⁿ description). NWP models are usually Eulerian, but some are hybrid: Lagⁿ description for acceleration and Eulerian for other terms.

Note: if we know \vec{u} as a f^n of grid coordinates x, y, z and t (i.e., Eulerian data), can still solve for trajectory. Trajectory eqns are:

$$\frac{D\vec{x}}{Dt} = \vec{u}[\vec{x}(\vec{x}_0, t), t]$$

It's a hybrid Lagrangian/Eulerian notation. \vec{u} is expressed as a f^n of the fixed points that happen to coincide with location \vec{x} of the parcel. At each time t work with a different set of fixed points.

Can also write: $\frac{D\vec{x}}{Dt} = \vec{u}[\vec{x}(t), t]$ where \vec{x}_0 is implied.

or in components:

$$\begin{split} &\frac{Dx}{Dt} = u \Big[x(t), y(t), z(t), t \Big], \\ &\frac{Dy}{Dt} = v \Big[x(t), y(t), z(t), t \Big], \\ &\frac{Dz}{Dt} = w \Big[x(t), y(t), z(t), t \Big]. \end{split}$$

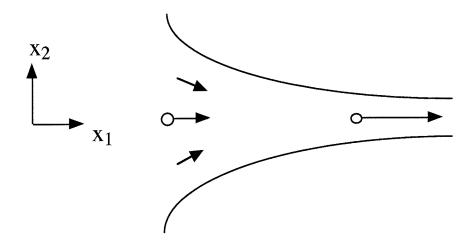
3 coupled ordinary differential equations (odes). The 3 consts of integration are fixed by choice of \vec{x}_0 . Can solve odes <u>numerically</u> (e.g., Runge-Kutta) or in simple cases solve them analytically.

If $\frac{\partial}{\partial t}$ (dep variables) = 0 then we have a <u>steady state</u>.

Note: air parcels in some steady state flows can still accelerate:

$$\frac{Du_{j}}{Dt} = \frac{\partial u_{j}}{\partial t} + u_{i} \frac{\partial u_{j}}{\partial x_{i}}$$
0 in steady state

e.g., steady flow through a canyon [vertical cliffs]: Suppose we know that the following flow is in a steady state:



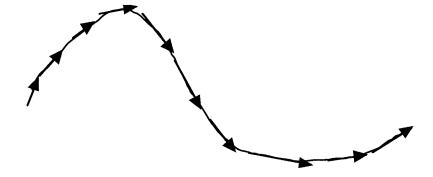
Show that parcels accelerate along centerline:

$$\frac{Du_1}{Dt} = \frac{\partial u_1}{\partial t} + u_1 \frac{\partial u_1}{\partial x_1} + \left[u_2 \frac{\partial u_1}{\partial x_2} \right] + u_3 \frac{\partial u_1}{\partial x_3}$$

$$0 \text{ (s.s)} \qquad 0 \text{ (why?)} \qquad 0 \text{ (no vert motion)}$$

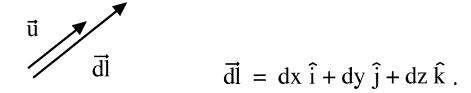
$$\therefore \frac{Du_1}{Dt} = u_1 \frac{\partial u_1}{\partial x_1} > 0$$

<u>Streamline</u>: a line that is everywhere <u>tangent</u> to local velocity vectors (at a given time). It's an Eulerian concept.



A streamline is constructed at a fixed time (snapshot). In general, it does not give history of parcel motion but <u>streamlines and trajectories do coincide if flow is in a steady state.</u>

To derive differential eqns for streamlines, consider a tiny chunk dl of a streamline:



Since \vec{dl} is || to \vec{u} , $\vec{dl} \times \vec{u} = 0$

$$\therefore \hat{i} \left(w \, dy - v \, dz \right) + \hat{j} \left(u \, dz - w \, dx \right) + \hat{k} \left(v \, dx - u \, dy \right) = 0$$

Since each term () must be 0 [dot eqn with \hat{i} , \hat{j} , \hat{k} in turn], get:

$$w dy - v dz = 0 \rightarrow \frac{dz}{w} = \frac{dy}{v}$$

$$u dz - w dx = 0 \rightarrow \frac{dz}{w} = \frac{dx}{u}$$

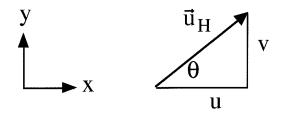
$$v dx - u dy = 0 \rightarrow \frac{dx}{u} = \frac{dy}{v}.$$

So
$$\frac{dx}{u} = \frac{dy}{v} = \frac{dz}{w}$$
 differential eqns of streamline.

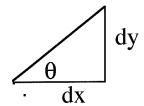
Could also write these as: $\frac{dy}{dx} = \frac{v}{u}$, $\frac{dz}{dx} = \frac{w}{u}$.

----- alternate derivation using geometrical considerations:

Consider horiz part of \vec{u} at a point in xy plane, $\vec{u}_H \equiv u \hat{i} + v \hat{j}$:



streamline through same point looks like:



has same θ ! so same $\tan \theta$

$$\therefore \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{v}}{\mathrm{u}}$$

Similarly, consider xz plane to get $\frac{dz}{dx} = \frac{w}{u}$.

Can rewrite these odes in parametric form.

 $\frac{dx}{u} = \frac{dy}{v} = \frac{dz}{w} = ds$ where s is a parameter (pseudo-arc length) ÷ by ds:

$$\frac{dx}{ds} = u$$
, $\frac{dy}{ds} = v$, $\frac{dz}{ds} = w$ Parametric eqns for streamline

or:

$$\frac{dx}{ds} = u(x, y, z, t^*), \qquad \frac{dy}{ds} = v(x, y, z, t^*), \qquad \frac{dz}{ds} = w(x, y, z, t^*),$$

where t* is an analysis time, a constant.

3 coupled 1st order odes. The 3 consts of integration allow you to specify a point x_0 , y_0 , z_0 through which the streamline passes.