METR 5113, Advanced Atmospheric Dynamiés |
Alan Shapiro, Instructor
Wednesday, 5 September 2018 (lecture 7)

- Day/time for exams and make-ups: Fridays 9-11 am
- 2 handouts: normal congruence, answers to prob set 1.

Normal congruence

!

A sfc that is everywhere L to the flow is a "normal congruence’

e.g. for unidirectional flow:

normal
congruence
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Can such a sfc be constructed in all flows? No! Only in flows
that have no helicity,i.e.,only if G-(Vxtd) = 0. (i-® =0,
where ® = V X U is vorticity). See optional handout for details.

Streamtubes

Consider arbitrary closed curve C drawn in the flow at a given
time. Through each point of C draw a streamline. The sfc swept
out by these streamlines is a streamtube. It's a sfc that's
everywhere tangent to local velocity vectors. A streamtube
behaves kinematically like a pipe (no flow L to sidewalls).



Consider volume V enclosed by chunk of a streamtube:
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fi is local unit outward normal to the closed sfc A bounding V
(A is streamtube + 2 end-faces). fi on streamtube is L to flow.

If flow is incompressible (3D non-divergent, V - i = 0) the lhs of
divthmf V-ﬁdV=f i-f1dA is 0, so rhsis O: J i-1dA=0
\" A A

f ﬁ-ﬁdA+f i-ndA + f u-ndA
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0 since U- i = 0 on streamtube



f i-fdA =—f i-fdA

facel face2

f i-AdA isequal and opposite on the 2 end-faces.

Rate of mass transport inward across one face equals rate of
mass transport outward across other face. If a face is small, the
velocity is (relatively) large.

Strain rates in a fluid

"Normal" or "linear" rate of strain is rate of change in length of a

linear fluid element per unit length of the element. (elements are
infinitesimal).

Consider infinitesimal linear fluid element initially aligned in X,

dir?. Linear rate of strain of this element is _ llm <—
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Relate it to flow field.
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|[Figure depicts translation, stretching and rotation. Fluid element
is so small that velocity varies at most linearly across it, i.e., h.o.t.
in Taylor expansion drop out.]

For small 8t, elongation of this x;-oriented element is due only to
stretching in x; direction. Rotation and translation don't elongate
the element. So don't worry about them.

Length of element at time t: Ox((t) = Xg — XA
Length of element at time t + Ot: Ox ((t+8t) = X — X4

Xg = Xg + ug ot + h.o.t.

XA = X + Uy dt + hot.

’

Xp — X4 = Xg — Xz + (uB - uA)St + h.o.t.

8x (t+8t) = 8x (1) + (uB _ uA) 5t + h.o.t.
(

5x {(t+8t) — 8x(t) = (jug] — uy) 8t + hot.

\L Taylor expansion for ug:

du
uB = uA + &‘1‘6)(1 + h.o.t.

5 (t+81) — Sx (1) = S—E-SXlSt + hot.

+ by &x {0t and let 6x, — 0,0t — 0 to get linear rate of strain:



I Ox ((t+0t) — Ox(t) _ duy
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ot—0

Dox du Lo .
or, 5)1(1 Dtl = &% (in limit of vanishing 0X ; )

e.g., flows with du/dx; > 0:
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Similar analysis of X,- and x3-oriented blobs leads to:
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Volumetric rate of strain: relative rate of change in yolume of an

o . 1 D&V
infinitesimal fluid box: SV Dt

OV = dx1 0xp 0X3




Relate vol rate of strain to the flow field:
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So 81\7 DStV V-i (in limit of vanishing box size)

So if flow is non-divergent (V - i = 0), fluid elements do not
change their volume (though they can change their shape).



