METR 5113, Advanced Atmospheric Dynamics I Alan Shapiro, Instructor Monday, 10 September 2018 (lecture 9)

- 1 handout: review of linear algebra

Local flow analysis

Real flows are messy. But zoom in on a small area and the flow looks a lot simpler: it's the sum of several simple flow types.

Describe flow in the vicinity of any given point O.

 \overrightarrow{dx} is directed distance from point O to a nearby point P.

Perform Taylor expansion of flow at P about point O:

$$u_{i}(\vec{x}_{O} + \vec{dx}) = u_{i}(\vec{x}_{O}) + \frac{\partial u_{i}}{\partial x_{j}}(\vec{x}_{O}) dx_{j} \quad (\text{h.o.t} \rightarrow 0 \text{ for } dx_{j} \rightarrow 0)$$

$$\frac{\partial u_{i}}{\partial x_{j}} = \frac{1}{2} \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \right) + \frac{1}{2} \left(\frac{\partial u_{i}}{\partial x_{j}} - \frac{\partial u_{j}}{\partial x_{i}} \right)$$
velocity gradient tensor sym tensor anti-sym tensor

velocity gradient tensor

$$= e_{ij} + \frac{1}{2} r_{ij}$$
rate of strain rotation tensor tensor

$$\therefore u_i(\vec{x}_O + \vec{dx}) = u_i(\vec{x}_O) + e_{ij} dx_j + \frac{1}{2} r_{ij} dx_j \quad [e, r \text{ evaluated at O}]$$

<u>Locally</u> the velocity varies <u>linearly</u> with spatial coords.

r is an anti-sym 2^{nd} order tensor. Has 3 distinct elements. Can always relate comp^s of an antisym 2^{nd} order tensor to comp^s of a vector. In this case, relate comp^s of r to comp^s of vort vector $\vec{\omega}$. A 2^{nd} order antisym tensor related to $\vec{\omega}$ is:

$$\epsilon_{ijk} \, \omega_{k} = \epsilon_{ijk} \, \epsilon_{klm} \, \frac{\partial u_{m}}{\partial x_{l}} = \left(\delta_{il} \, \delta_{jm} - \delta_{im} \, \delta_{jl} \right) \frac{\partial u_{m}}{\partial x_{l}}$$

$$= \frac{\partial u_{j}}{\partial x_{i}} - \frac{\partial u_{i}}{\partial x_{j}} \quad \text{this is } -r_{ij}$$

$$\therefore \quad r_{ij} = -\epsilon_{ijk} \, \omega_{k}$$

What is meaning of $\frac{1}{2} r_{ij} dx_j$?

$$\frac{1}{2} r_{ij} dx_j = -\frac{1}{2} \varepsilon_{ijk} \omega_k dx_j = \frac{1}{2} \varepsilon_{ikj} \omega_k dx_j = \frac{1}{2} \left(\vec{\omega} \times \vec{dx} \right)_i$$

 $\frac{1}{2}\vec{\omega} \times \vec{dx}$ is velocity associated w/ rigid body rotation (also known as solid body rotation) about an axis through O w/ angular velocity $\vec{\omega}/2$.

Speed at P: $\left| \frac{1}{2} \vec{\omega} \times \vec{dx} \right| = \left| \frac{\vec{\omega}}{2} \right| \left| \vec{dx} \right| \sin \theta$. It's the ang velocity $|\vec{\omega}/2|$ times distance $|\vec{dx}| \sin \theta \perp$ to rotation axis. Dirⁿ of velocity at P: \perp to $\vec{\omega}$ and \vec{dx} (into page, in sense of right hand rule).

$$u_i(\vec{x}_O + \vec{dx}) = u_i(\vec{x}_O) + e_{ij} dx_j + \frac{1}{2} r_{ij} dx_j$$
 [e, r evaluated at O]

So flow in vicinity of O is due to:

- (1) translation $u_i(\vec{x}_O)$
- (2) deformation $e_{ij} dx_j$ [deformation: parcels change their distances from each other]
- (3) rigid body rotation $\frac{1}{2} r_{ij} dx_j$

e.g., consider local flow analysis for a parallel shear flow,

$$u = f(y),$$
 $v = 0,$ $w = 0,$ $[u_1 = f(x_2),$ $u_2 = 0,$ $u_3 = 0].$

Flow might look like:

Zoom in on a point O of interest. For local analysis consider tiny neighborhood around O. e, r are evaluated at O [involves only 1st derivs of \vec{u} evaluated at O]. Magnified view:

Evaluate comp^s of e:

$$\begin{aligned} \mathbf{e}_{11} &= \frac{\partial \mathbf{u}_1}{\partial \mathbf{x}_1} = 0, \quad \mathbf{e}_{22} &= \frac{\partial \mathbf{u}_2}{\partial \mathbf{x}_2} = 0, \quad \mathbf{e}_{33} &= \frac{\partial \mathbf{u}_3}{\partial \mathbf{x}_3} = 0, \\ \mathbf{e}_{12} &= \frac{1}{2} \left(\frac{\partial \mathbf{u}_1}{\partial \mathbf{x}_2} + \frac{\partial \mathbf{u}_2}{\partial \mathbf{x}_1} \right) = \frac{1}{2} \frac{\mathrm{d}\mathbf{f}}{\mathrm{d}\mathbf{x}_2} = \alpha, \quad (> 0 \text{ at O}) \\ \mathbf{e}_{21} &= \mathbf{e}_{12} = \alpha \end{aligned}$$

all other comp^s of e are zero.

Evaluate comp^s of r:

$$r_{11} = r_{22} = r_{33} = 0 , \text{(since r is antisym)}$$

$$r_{12} = \frac{\partial u_1}{\partial x_2} - \left[\frac{\partial u_2}{\partial x_1} \right] = \frac{df}{dx_2} = 2\alpha$$

$$r_{21} = -r_{12} = -2\alpha$$

all other comps of r are zero.

Look at u₁ near point O:

$$u_1(\vec{x}_O + \vec{dx}) = u_1(\vec{x}_O) + \alpha dx_2 + \alpha dx_2$$

shear strain rotation

Now look at u₂ near point O:

$$u_{2}(\vec{x}_{O} + \vec{dx}) = u_{2}(\vec{x}_{O}) + e_{2j} dx_{j} + \frac{1}{2} r_{2j} dx_{j}$$

$$= u_{2}(\vec{x}_{O}) + e_{21} dx_{1} + e_{22} dx_{2} + e_{23} dx_{3}$$

$$0 \qquad \alpha \qquad 0$$

$$+ \frac{1}{2} (r_{21} dx_1 + r_{22} dx_2 + r_{23} dx_3)$$

$$u_2(\vec{x}_0 + \vec{dx}) = \alpha dx_1 - \alpha dx_1 = 0$$
shear strain rotation

Evaluate these formulas for u_1 and u_2 in different locations, e.g., go along x_1 axis (where $dx_2 = 0$), then go along x_2 axis (where $dx_1 = 0$). Look at the individual contributions from translation, deformation, and rotation. Find that:

[Go through first part of handout on review of linear algebra].