METR 5113, Advanced Atmospheric Dynamics I
Alan Shapiro, Instructor
Monday, 10 September 2018 (lecture 9)

- 1 handout: review of linear algebra

Local flow analysis

Real flows are messy. But zoom in on a small area and the flow
looks a lot simpler: it's the sum of several simple flow types.

Describe flow in the vicinity of any given point O.

P

P is at location X + dx

O is at location X 0

dx is directed distance from point O to a nearby point P.

Perform Taylor expansion of flow at P about point O:
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Locally the velocity varies linearly with spatial coords.

r is an anti-sym 20d order tensor. Has 3 distinct elements. Can
always relate comps of an antisym 204 order tensor to comps of a
vector. In this case, relate comps of r to comps of vort vector @ .
A 2nd order antisym tensor related to ® is:
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%(7) x dx is velocity associated w/ rigid body rotation (also

known as solid body rotation) about an axis through O w/
angular velocity 0/2 .



rotation axis
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.(22’ ‘ dx l sin® | It's the ang velocity

Speed at P: i %(7) x dx

G/2 | times distance |dx| sin® L to rotation axis. Dir of velocity
at P: L to ® and dx (into page, in sense of right hand rule).

u;(Xp+ dx) = uy(Xp) + e dx; + —%— rjdx; [e, r evaluated at O]

So flow in vicinity of O is due to:
(1) translation u;(Xp)

(2) deformation  €;; dx i
[deformation: parcels change their distances from each other]

(3) rigid body rotation % Ij; dx i

e.g., consider local flow analysis for a parallel shear flow,
u = 1(y), v=0, w =0,

[111 = f(Xz), Uy = O, usz = O]



Flow might look like:
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Zoom in on a point O of interest. For local analysis consider tiny
neighborhood around O. e, r are evaluated at O [involves only
Ist derivs of U evaluated at O]. Magnified view:
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Evaluate comps of e:
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all other comps of e are zero.



Evaluate comps of r:

r{; = Iy = rzz = 0, (since r is antisym)
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all other comps of r are zero.

Look at u; near point O:
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uRo+dx) = uy(Rg) + adx, + odx,
shear strain  rotation

Now look at u, near point O:
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u2(X0+dX) = OCXm — (XXm = 0
shear strain  rotation

Evaluate these formulas for uy and up in different locations, e.g.,
go along x axis (where dx; = 0), then go along x; axis (where
dx; = 0). Look at the individual contributions from translation,

deformation, and rotation. Find that:
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translation deformation rotation

(shear strain
in this case)

[Go through first part of handout on review of linear algebra].



