METR 5123, Advanced Atmospheric Dynamics II Alan Shapiro, Instructor

REVIEW OF SURFACE GRAVITY WAVES

First, we'll review some notation and concepts that will be applicable to many kinds of waves (not just surface gravity waves).

Often we'll work w/ waves of the form:

some flow property ~
$$a \sin\left[\frac{2\pi}{\lambda}(x-ct)\right]$$
 or $a \cos\left[\frac{2\pi}{\lambda}(x-ct)\right]$

a is amplitude

 $\frac{2\pi}{\lambda}(x - ct)$ is <u>phase</u> of wave

 λ is <u>wavelength</u>

c is phase speed

Why consider waves of this form?

-- Many waves in atmosphere "look" like sines or cosines.

-- Many waves approximately satisfy <u>linear const coeff odes and</u> <u>pdes</u> that permit sin and cos solns. Can use <u>Fourier analysis</u> to get solns of complicated problems by summing sin and cos solns of various amplitudes and wavelengths.

A closer look at wave parameters:

phase:
$$\frac{2\pi}{\lambda}(x - ct)$$

Wave repeats itself when <u>phase changes by 2π </u>. So, at a fixed moment in time, phase changes by 2π when x changes by λ . Hence the name wavelength for λ .

$$k \equiv \frac{2\pi}{\lambda}$$
 is wavenumber, # waves in (dimensional) length of 2π .

e.g., if $\lambda = \pi$ (meters) then there are 2 waves in 2π meters. $k = \frac{2\pi}{\pi m} = 2 m^{-1}$.

At a fixed point, phase changes by 2π when time changes by $\frac{\lambda}{c}$ So wave <u>period</u> is: $T \equiv \frac{\lambda}{c}$.

$$v \equiv \frac{1}{T}$$
 is frequency, # of oscillations per unit time

 $\omega \equiv \frac{2\pi}{T} = 2\pi v$ is circular (or radian) frequency.

Since $T = \frac{\lambda}{c} \rightarrow \omega = 2\pi \frac{c}{\lambda} = kc$

 \therefore c = $\frac{\omega}{k}$

alternate expressions:

$$sin\frac{2\pi}{\lambda} (x - ct)$$
$$sin[k(x - ct)]$$
$$sin(kx - \omega t)$$

Motion of crests/troughts is motion of a geometric pattern. <u>Fluid</u> does not generally move with the wave pattern, e.g. Rossby waves, e.g., ocean waves might propagate toward shore at 20 m/s, but fluid moves toward and away from shore at $\sim 1 \text{ m/s}$.

Surface gravity waves

Consider 2-D motion in the x-z plane of a liquid w/ a free surface (e.g. air/sea interface) [a pool of cold air underlying warm air is similar but more complicated]

-- assume disturbance is "infinitesimal", i.e., a is so small that:

a << H (a/H << 1)

and $a \ll \lambda$ $(a/\lambda \ll 1)$

Because of this, nonlinear accelⁿ terms are very small compared to local derivs (products of small quantities are really small)

-- neglect friction

-- assume T << rotation period of earth, or equivalently $\omega >> f$ \therefore can safely neglect Coriolis force.

-- assume fluid was initially at rest (so irrotational) and waves created irrotationally. So from Kelvin's Th^m, the flow <u>will</u> always be irrot. So $\vec{\omega}(t) = 0$

 $\therefore \quad \vec{u}(t) = \nabla \phi(t)$

-- assume flow is incompressible, $\nabla \cdot \vec{u} = 0$

Substituting in $\vec{u} = \nabla \phi$ we get:

 $\nabla\cdot\nabla\varphi\ =\ 0$

 $\therefore \nabla^2 \phi = 0 \text{ Laplace's eqn.}$

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial z^2} = 0$$

Need b.c.s to solve it. At bottom: <u>impermeability cond</u>n:

On top (free surface): a kinematic b.c. and a dynamic b.c.

<u>Top Kinematic b.c.</u>: A fluid element on free sfc remains on that sfc no matter how sfc moves or deforms. $\therefore z_{parcel on sfc} = \eta$

 $\therefore \quad w_{\text{parcel on sfc}} = \frac{D}{Dt} z_{\text{parcel on sfc}} = \frac{D\eta}{Dt} = \frac{\partial\eta}{\partial t} + u \frac{\partial\eta}{\partial x}$ $\therefore \quad \frac{\partial\phi}{\partial z} = \frac{\partial\eta}{\partial t} + u \frac{\partial\eta}{\partial x} \quad \text{on } z = \eta(x,t)$

For infinitesimal waves, neglect products of small quantities (nonlinear terms). Neglect $u \frac{\partial \eta}{\partial x}$.

 $\therefore \frac{\partial \phi}{\partial z} = \frac{\partial \eta}{\partial t} \text{ on } z = \eta(x,t) \text{ [still nonlinear: } \eta \text{ is affected by flow]}$ Exapnd l.h.s. in a Taylor series about z = 0:

$$\frac{\partial \phi}{\partial z}\Big|_{z=\eta} = \frac{\partial \phi}{\partial z}\Big|_{z=0} + \frac{\partial}{\partial z}\left(\frac{\partial \phi}{\partial z}\right)\Big|_{z=0}\eta + \dots$$
[________]
neglect these terms since η is small
$$\frac{z=0}{z=\eta}$$

 $\therefore \quad \frac{\partial \phi}{\partial z} = \frac{\partial \eta}{\partial t} \text{ on } z = 0 \quad \underline{\text{Linearized kinematic b.c. on free sfc.}}$ [Neglected a nonlinear term <u>and put b.c. at z=0 instead of z=\eta</u>]

<u>Dynamic b.c.</u> on free surface: pressure is <u>continuous</u> across air/sea interface. So pressure on liquid side of interface = atm pressure.

 $p(z = \eta(x,t)) = p_{atm}$

Translate this b.c. into a b.c. on ϕ , using Bernoulli's eqⁿ for unsteady, irrot flow:

 $\frac{\partial \phi}{\partial t} + \frac{q^2}{2} + \frac{p}{\rho} + gz = C \quad (\text{same const everywhere})$ Apply it on free sfc z= η (liquid side), w/ p=p_{atm}, and neglect q²:

$$\therefore \frac{\partial \phi}{\partial t} + \frac{p_{atm}}{\rho} + g\eta = C$$

$$\therefore \frac{\partial \phi}{\partial t} + g\eta = (C - \frac{p_{atm}}{\rho}) = \text{const}$$

Set const = 0. [Flow doesn't care about it. Equivalently, define $\phi_{new} = \phi_{old} + \text{const t}$, and plug into above eqn. The const cancels out, but since $\vec{u} = \nabla \phi$ and $\nabla \phi_{new} = \nabla \phi_{old}$, the flow is unchanged.]

$$\therefore \quad \underbrace{\frac{\partial \phi}{\partial t}}_{\downarrow} + g\eta = 0 \quad \text{at } z = \eta$$

Expand it in a Taylor series in z about z = 0:

[neglect since η is small]

$$\therefore \quad \frac{\partial \phi}{\partial t}\Big|_{z=\eta} = \left.\frac{\partial \phi}{\partial t}\right|_{z=0} + \left.\frac{\partial}{\partial z}\left(\frac{\partial \phi}{\partial t}\right)\right|_{z=0} \eta + \text{h.o.t.}$$

: <u>linearized dynamic</u> free sfc b.c. is:

$$\frac{\partial \phi}{\partial t} + g\eta = 0$$
 at $z = 0$

Want to solve $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial z^2} = 0$ subject to the above b.c.

Consider a "wavy" pattern for η : $\eta = a \cos(kx - \omega t)$

From either top b.c., suspect $\phi \propto \sin(kx - \omega t) w/a z$ dependence.

Trial solution: $\phi = f(z) \sin(kx - \omega t)$ [will it work?] Plug it into Laplace's eqⁿ, get:

$$-k^{2} f \sin(kx - \omega t) + \frac{d^{2} f}{dz^{2}} \sin(kx - \omega t) = 0$$

 $\therefore \frac{d^2f}{dz^2} - k^2f = 0 \quad a 2^{nd} \text{ order linear const coeff ode}$

Trial soln for f: $f = e^{mz}$. Plug into ode, get:

$$m^2 - k^2 = 0$$
, $\therefore m = k \text{ or } - k$

So general solⁿ for f is: $f = A e^{kz} + B e^{-kz}$ and so ϕ becomes:

(*)
$$\phi = (A e^{kz} + B e^{-kz}) \sin(kx - \omega t)$$

Now use b.c. to pin down A, B.

Lower kinematic b.c. is

$$\frac{\partial \phi}{\partial z} = 0$$
 at $z = -H$.

Apply it in (*), get

$$\left(A k e^{kz} - k B e^{-kz}\right) \bigg|_{z=-H} \sin(kx - \omega t) = 0$$

$$\therefore A k e^{-kH} - k B e^{kH} = 0$$

$$\therefore A = B e^{2kH}$$

Top linearized kinematic b.c. is

$$\frac{\partial \phi}{\partial z} = \frac{\partial \eta}{\partial t}$$
 on $z = 0$.

Apply it in (*), get

$$\therefore \left(Ake^{kz} - kBe^{-kz} \right) \bigg|_{z=0} \sin(kx - \omega t) = -a(-\omega) \sin(kx - \omega t)$$

$$\therefore k(A - B) = a\omega$$

2 linear algebraic eqns for 2 unknowns, A, B. Solution is:

$$A = \frac{a\omega}{k(e^{2kH} - 1)} e^{2kH}, \quad B = \frac{a\omega}{k(e^{2kH} - 1)}$$

$$\therefore \quad \phi = \frac{a\omega}{k(e^{2kH} - 1)} (e^{2kH} e^{kz} + e^{-kz}) \sin(kx - \omega t)$$

factor out e^{kH} from top and bottom, and mult by $\frac{2}{2}$

$$\therefore \quad \phi = \frac{a\omega}{k} \frac{2}{e^{kH} - e^{-kH}} \left(\frac{e^{k(z+H)} + e^{-k(z+H)}}{2} \right) \sin(kx - \omega t)$$

$$\therefore \quad \phi = \frac{a\omega}{k} \frac{\cosh\left[k\left(z+H\right)\right]}{\sinh\left(kH\right)} \sin(kx - \omega t)$$

----- scratch paper, review of hyperbolic functions

here's how e^x and e^{-x} behave:

w =
$$\frac{\partial \phi}{\partial z}$$
 = $a\omega \frac{\sinh[k(z+H)]}{\sinh(kH)} \sin(kx - \omega t)$

Get p from linearized Bernoulli eqn:

$$\frac{p}{\rho} = \text{const} - gz - \frac{\partial \phi}{\partial t}$$
$$= \text{const} - gz + \frac{a\omega^2}{k} \frac{\cosh[k(z+H)]}{\sinh(kH)} \cos(kx - \omega t)$$

Now apply linearized dynamic b.c.: $\frac{\partial \phi}{\partial t} + g\eta = 0$ on z = 0

$$\therefore -\frac{a\omega^2}{k}\frac{\cosh(kH)}{\sinh(kH)}\cos(kx-\omega t) + g a \cos(kx-\omega t) = 0$$

$$\omega^2 = gk \tanh(kH)$$

$$\therefore \quad \overline{\omega = \sqrt{gk \tanh(kH)}} \quad \underline{dispersion \ relation} \ [\omega = \omega(k)]$$
$$c = \frac{\omega}{k}, \qquad \therefore \ c = \sqrt{\frac{g}{k} \tanh(kH)}$$

Note: c, ω indep of amplitude a (a feature of linear waves).

Now consider the limiting cases of "deep-water" and "shallowwater" surface gravity waves.

"deep-water" condition: $\lambda \ll H$ or $\frac{H}{\lambda} \gg 1$ or $kH \gg 1$

 $\therefore \tanh(kH) \approx 1$

Actually, $tanh(kH) \approx 1$ even for H/λ not too big:

When there's a storm way out at sea, the first waves to reach the shore are the long waves (low frequency waves). "shallow-water" condition: $\lambda \gg H$ or $\frac{H}{\lambda} \ll 1$ or kH $\ll 1$

$$\therefore \tanh(kH) = \frac{e^{kH} - e^{-kH}}{e^{kH} + e^{-kH}} = \frac{(1 + kH + ...) - (1 - kH + ...)}{(1 + kH + ...) + (1 - kH + ...)}$$

$$= \frac{2kH + ...}{2 + ...} \approx kH$$

$$\therefore \omega_{\text{shallow}} = \sqrt{gk \ kH} = k \ \sqrt{gH}$$

$$\therefore c_{\text{shallow}} = \frac{\omega_{\text{shallow}}}{k} = \sqrt{gH} \quad \text{indep of } k!$$

So shallow-water waves are <u>non-dispersive</u>. For shallow water waves, $c \downarrow as H \downarrow$

Consider wave crests approaching a beach obliquely:

Wave crests turn as they approach beach, end up || to beach. A case of <u>wave refraction</u> (bending of wave fronts in inhomogeneous media -- in this case variable H(x)).

recall that for general surface gravity waves:

$$\omega = \sqrt{gk \tanh(kH)}$$
, $c = \sqrt{\frac{g}{k} \tanh(kH)}$

and that for "shallow water": $kH \ll 1$ so we're led to

$$\omega_{\text{shallow}} = k \sqrt{gH}$$
, $c_{\text{shallow}} = \sqrt{gH}$

Now consider pressure in shallow water conditions:

$$\frac{p_{\text{shallow}}}{\rho} = \text{const} - gz + \frac{a\omega^2}{k} \frac{\cos[k(z+H)]}{\sinh(kH)} \cos(kx - \omega t)$$
$$= \text{const} - gz + ag\cos(kx - \omega t)$$
$$= \text{const} - g(z - \eta) \quad \text{Hydrostatic pressure distribution.}$$

Now look at phase speed c for the general surface wave case (deep/shallow/whatever):

"deep" or "shallow" depends on λ relative to H. Water that's 100 m deep is "deep" for $\lambda = 10m$ but "shallow" for $\lambda = 1000$ m.

Derive <u>streamfunction</u> for surface gravity wave [recall this is a 2D incomp flow]

$$\frac{\partial \Psi}{\partial z} = u = \frac{\partial \Phi}{\partial x} = a\omega \frac{\cosh[k(z+H)]}{\sinh(kH)}\cos(kx-\omega t)$$

integrate w.r.t. z:

(1)
$$\psi = \frac{a\omega}{k} \frac{\sinh[k(z+H)]}{\sinh(kH)} \cos(kx - \omega t) + F(x,t)$$

Similarly, $\frac{\partial \Psi}{\partial x} = -w = ...$ Integrate w.r.t. x, to get:

(2)
$$\Psi = \frac{a\omega}{k} \frac{\sinh[k(z+H)]}{\sinh(kH)} \cos(kx - \omega t) + G(z,t)$$

F(x,t) = G(z,t) but fⁿ of x can't be a fⁿ of z -- so no x or z dependence. So F(x,t) = G(z,t) = E(t). But E(t) is <u>irrelevant</u> since u, w only care about spatial derives of ψ . So take E(t) = 0.

$$\therefore \quad \Psi = \frac{a\omega}{k} \frac{\sinh[k(z+H)]}{\sinh(kH)} \cos(kx - \omega t)$$

Graph streamlines ($\psi = \text{const}$) at t = 0.

$$\psi = 0$$
 for: $z = -H$ and for: $k = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \dots$
 $2\pi/\lambda$
 $x = \pm \frac{\lambda}{4}, \pm \frac{3\lambda}{4}, \pm \frac{5\lambda}{4}, \dots$

[Get dirn of flow (arrows) from soln for u or w, or consider: for pattern moving toward right, η is rising to right of crest (so w>0 there) and η is falling to left of crest (so w<0 there). Arrows on

bottom give sense of horiz conv/div needed to support this w field. Clearly parcel velocity differs from phase speed.].

Group Velocity

Concept of group velocity is appropriate for many different types of waves (not just surface gravity waves).

Consider <u>2 waves</u> of <u>equal amplitude</u> and <u>slightly different</u> <u>frequency and wavelength</u> moving in <u>same</u> direction:

- $\omega_1 = \omega + \Delta \omega, \qquad k_1 = k + \Delta k$
- $\omega_2 = \omega \Delta \omega, \qquad k_2 = k \Delta k$
- assume $\frac{\Delta\omega}{\omega} \ll 1$, $\frac{\Delta k}{k} \ll 1$

Because of dispersion relation, $\Delta \omega$ is related to Δk .

Mean frequency is:
$$\frac{\omega_1 + \omega_2}{2} = \frac{\omega + \Delta \omega + \omega - \Delta \omega}{2} = \omega$$

Mean wavenumber is: $\frac{k_1 + k_2}{2} = \dots = k$

Where the waves are in phase (or nearly so) they combine to form a wave of twice amplitude. Where they're out of phase, they kill each other off.

$$\therefore \eta = A \underbrace{\cos(kx - \omega t)}_{\downarrow} \quad \text{where } A \equiv 2a \cos(\Delta kx - \Delta \omega t)$$

effective carrier wave (mean wave)
amplitude

Effective amplitude A is itself a wave with wavelength $\lambda_{\text{amplitude}} = \frac{2\pi}{\Delta k} \implies \frac{2\pi}{k} = \lambda_{\text{carrier wave}}$ A propagates at speed $\frac{\Delta \omega}{\Delta k}$ where $\Delta \omega$ is related to Δk by dispersion relⁿ. For small Δk , $\frac{\Delta \omega}{\Delta k} \rightarrow \frac{d\omega}{dk}$. Define $c_g \equiv \frac{d\omega}{dk}$

or
$$\vec{c}_g \equiv \frac{d\omega}{dk} \hat{i}$$
 Group velocity. A vector.

c is phase speed of crests [not a vector, see fig. 7.3 Kundu)

 c_g is speed of <u>envelope</u> of crests.

Energy is trapped between nodes \therefore energy propagates at speed of nodes (speed of envelope), i.e. speed c_g , not phase speed c.

For <u>deep-water sfc waves</u>:

$$\omega = \sqrt{gk}$$
$$c = \sqrt{\frac{g}{k}}$$
$$c_g = \frac{d\omega}{dk} = \frac{1}{2\sqrt{k}}\sqrt{g}$$

$$\therefore \quad \boxed{c_g = \frac{1}{2}c} \text{ [since } c > c_g, \text{ individual crests move through} \\ \text{envelope, die at nodes]}$$

For shallow water sfc waves:

$$\omega = k \sqrt{gH}$$

$$c = \sqrt{gH}$$

$$c_g = \frac{d\omega}{dk} = \sqrt{gH}$$

$$\therefore \quad c_g = c$$