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METR 5123, Advanced Atmospheric Dynamics II
Alan Shapiro, Instructor

REVIEW OF SURFACE GRAVITY WAVES

First, we'll review some notation and concepts that will be
applicable to many kinds of waves (not just surface gravity
waves).

Often we'll work w/ waves of the form:

  
some flow property ~ a sin 2π

λ x – ct or a cos 2π
λ x – ct

          a is amplitude

    2π
λ x – ct  is phase of wave

         λ is wavelength

         c is phase speed

Why consider waves of this form?

--  Many waves in atmosphere "look" like sines or cosines.

--  Many waves approximately satisfy linear const coeff odes and
pdes that permit sin and cos solns.  Can use Fourier analysis to
get solns of complicated problems by summing sin and cos solns
of various amplitudes and wavelengths.

A closer look at wave parameters:
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phase:    2π
λ (x – ct)

Wave repeats itself when phase changes by 2π.  So, at a fixed
moment in time, phase changes by 2π when x changes by λ.
Hence the name wavelength for λ.

  k ≡ 2π
λ  is wavenumber, # waves in (dimensional) length of 2π.

e.g., if  λ = π (meters) then there are 2 waves in 2π meters.
  k = 2π

πm = 2 m– 1 .

Think:          long waves --> small k
short waves --> big k

At a fixed point, phase changes by 2π when time changes by 
  λ

c
So wave period is:    T ≡ λ

c .

  ν ≡ 1
T  is frequency, # of oscillations per unit time

  ω ≡ 2π
T = 2πν   is circular (or radian) frequency.

Since   T = λ
c → ω = 2π c

λ = kc

∴     c = ω
k
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alternate expressions:

  sin2π
λ (x – ct)

 sin[k(x – ct)]

  sin(kx – ωt)

Motion of crests/troughts is motion of a geometric pattern.  Fluid
does not generally move with the wave pattern,  e.g. Rossby
waves, e.g., ocean waves might propagate toward shore at 20
m/s, but fluid moves toward and away from shore at ~  1 m/s.

Surface gravity waves

Consider 2-D motion in the x-z plane of a liquid w/ a free
surface (e.g. air/sea interface) [a pool of cold air underlying
warm air is similar but more complicated]

  

x

z

H

a
z = 0

z = -H

z = η(x, t) is height   
        of free surface

H is depth of liquid
in undisturbed state

-- assume disturbance is "infinitesimal", i.e., a is so small that:
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a << H  (a/H << 1)

    and      a << λ  (a/λ << 1)

Because of this, nonlinear acceln terms are very small compared
to local derivs (products of small quantities are really small)

--  neglect friction

--  assume T << rotation period of earth, or equivalently ω >> f
∴  can safely neglect Coriolis force.

--  assume fluid was initially at rest (so irrotational) and waves
created irrotationally.  So from Kelvin's Thm, the flow will
always be irrot.  So   ω(t) = 0

  ∴   u(t) = ∇φ (t)

--  assume flow is incompressible,   ∇ ⋅ u = 0

Substituting in   u = ∇φ   we get:

  ∇ ⋅ ∇φ = 0

  ∴ ∇ 2φ = 0  Laplace's eqn.

  ∂2φ
∂x2 +

∂2φ
∂z2 = 0

Need b.c.s to solve it.
At bottom:  impermeability condn:
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...

w = 0  at  z = - H

∴   
  ∂φ
∂z = 0 at z = – H

On top (free surface):  a kinematic b.c. and a dynamic b.c.

Top Kinematic b.c.:  A fluid element on free sfc remains on that
sfc no matter how sfc moves or deforms. ∴  zparcel on sfc = η

∴   
  

wparcel on sfc = D
Dtzparcel on sfc =

Dη
Dt =

∂η
∂t + u

∂η
∂x

∴    
  ∂φ

∂z =
∂η
∂t + u

∂η
∂x     on z = η(x,t)

sfc moving upward: 

∂η/∂t>0 ∴  w > 0

Stationary sfc with u>0

∴ w>0 ∴ w<0

 
  ∂η

∂x
 > 0

 
  ∂η

∂x
 < 0

For infinitesimal waves, neglect products of small quantities
(nonlinear terms).  Neglect u ∂η/∂x.

∴  
  ∂φ

∂z
=

∂η
∂t

  on z = η(x,t)  [still nonlinear: η is affected by flow]

Exapnd l.h.s. in a Taylor series about z = 0:
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  ∂φ
∂z z = η

=
∂φ
∂z z = 0

+ ∂
∂z

∂φ
∂z z = 0

η + ...

                                   [________________________]
                                                neglect these terms since η  is small

z=0
z=η

∴   
  ∂φ

∂z =
∂η
∂t on z = 0   Linearized kinematic b.c. on free sfc.

[Neglected a nonlinear term and put b.c. at z=0 instead of z=η]

Dynamic b.c. on free surface:  pressure is continuous across
air/sea interface.  So pressure on liquid side of interface = atm
pressure.

.  patm.  
p(z=η)

p(z = η(x,t)) = patm

Translate this b.c. into a b.c. on φ, using Bernoulli's eqn for
unsteady, irrot flow:

  ∂φ
∂t +

q2

2
+

p
ρ + gz = C   (same const everywhere)

Apply it on free sfc z=η (liquid side), w/ p=patm, and neglect  q2 :
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∴ ∂φ

∂t +
patm

ρ + gη = C

  
∴ ∂φ

∂t
+ gη = (C –

patm
ρ ) = const

Set const = 0.  [Flow doesn't care about it.  Equivalently, define
φnew = φold + const t, and plug into above eqn.  The const cancels
out, but since   u = ∇φ  and   ∇φ new = ∇φ old , the flow is unchanged.]

  
∴ ∂φ

∂t
↓

+ gη = 0   at z = η

Expand it in a Taylor series in z about z = 0:

                                                                  [neglect since η  is small]
  

∴ ∂φ
∂t z = η

=
∂φ
∂t z = 0

+ ∂
∂z

∂φ
∂t z = 0

η + h.o.t.

∴  linearized dynamic free sfc b.c. is:

  ∂φ
∂t + gη = 0 at z = 0

Want to solve 
  ∂2φ

∂x2 +
∂2φ
∂z2 = 0  subject to the above b.c.

Consider a "wavy" pattern for η:  η = a cos(kx - ωt)

From either top b.c., suspect φ ∝  sin(kx-ωt) w/ a z dependence.

Trial solution:     φ = f(z) sin(kx – ωt)       [will it work?]
Plug it into Laplace's eqn, get:
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– k2 f sin(kx – ωt) + d2f

dz2 sin(kx – ωt) = 0

∴    
 d2f

dz2 – k2 f = 0     a 2nd order linear const coeff ode

Trial soln for f:   f =  emz.  Plug into ode, get:

   m2 – k2 = 0 ,  ∴   m = k or - k

So general soln for f is:    f = A ekz +  B e-kz

and so φ becomes:

(*)
  φ = A ekz + B e– kz sin(kx – ωt)

Now use b.c. to pin down A, B.

Lower kinematic b.c. is

 
  ∂φ

∂z = 0 at z = – H .

Apply it in (*), get

  
A k ekz – k B e– kz

z = – H
sin(kx – ωt) = 0

∴    A k e– kH – k B ekH = 0

∴  A = B e2kH
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Top linearized kinematic b.c. is

  
  ∂φ

∂z =
∂η
∂t on z = 0 .

Apply it in (*), get

∴  
  
Akekz – kBe– kz

z = 0
sin(kx – ωt) = – a(– ω) sin(kx – ωt)

∴     k A – B = aω

2 linear algebraic eqns for 2 unknowns, A, B.  Solution is:

  A = aω
k e2kH – 1

e2kH ,       B = aω
k e2kH – 1

   

∴   
  φ = aω

k e2kH – 1
e2kH ekz + e– kz sin(kx – ωt)

factor out   ekH  from top and bottom, and mult by  2
2

∴
  

φ = aω
k

2
ekH – e– kH

ek(z + H) + e– k(z + H)

2
sin(kx – ωt)
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∴
  

φ = aω
k

cosh [k (z + H)]
sinh (kH)

sin(kx – ωt)

----- scratch paper, review of hyperbolic functions

here's how ex and e-x  behave:

x

e-x

. 1
x

ex

. 1

Now define 
  

coshx ≡ ex + e– x

2 ,  the average of ex and e-x:

x

coshx

.1

for x >> 1, 
behaves
like  1

2 exfor x << -1, 
behaves like  1

2 e-x

Now define 
  

sinhx ≡ ex – e– x

2 ,  the difference btw ex and e-x

(divided by 2):
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x

sinhx

for x >> 1, 
behaves
like  1

2 ex

for x << -1, behaves
like -  1

2 e-x

 d
dx

coshx = 1
2

d
dx

ex + e– x = 1
2

ex – e– x = sinhx

 d
dx

sinhx = 1
2

d
dx

ex – e– x = 1
2

ex + e– x = coshx

Now define 
  

tanhx ≡ sinh x
cosh x

x

tanhx

-1

1

------------- end of scratch paper
  

u =
∂φ
∂x = aω cosh[k(z + H)]

sinh(kH)
cos(kx – ωt)
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w =

∂φ
∂z = aω sinh[k(z + H)]

sinh(kH)
sin(kx – ωt)

Get p from linearized Bernoulli eqn:

  p
ρ = const – gz –

∂φ
∂t

  
= const – gz + aω2

k
cosh[k(z + H)]

sinh(kH)
cos(kx – ωt)

Now apply linearized dynamic b.c.:   
  ∂φ

∂t + gη = 0 on z = 0

∴   
  

–
aω2

k
cosh(kH)
sinh(kH)

cos(kx – ωt) + g a cos(kx – ωt) = 0

  ω2 = gk tanh(kH)

∴   ω = gk tanh(kH)   dispersion relation [ω = ω(k)]

  
c = ω

k
, ∴ c =

g
k

tanh(kH)

Note:  c, ω indep of amplitude a (a feature of linear waves).

Now consider the limiting cases of "deep-water" and "shallow-
water" surface gravity waves.

"deep-water" condition:   λ << H or H
λ >> 1 or kH >> 1

  ∴ tanh(kH) ≈ 1
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Actually,   tanh(kH) ≈ 1  even for H/λ not too big:

x

tanhx

1
0.94

1.75

So, in practice, have 
"deep water" for kH > 1.75

So for deep water:   
  

ωdeep = gk , cdeep =
g
k

=
gλ
2π

∴  Longer waves have faster phase speeds.  [No H dependence]

Consider a mixture of short         After a while, waves sort
and long waves in deep water.           themselves out (disperse):

  
superposition of                short waves are         long waves
short + long waves           slow pokes                in front

When there's a storm way out at sea, the first waves to reach
the shore are the long waves (low frequency waves).
"shallow-water" condition:   λ >> H or H

λ << 1 or kH << 1

  
∴ tanh(kH) = ekH – e– kH

ekH + e– kH =
(1 + kH + ...) – (1 – kH + ...)
(1 + kH + ...) + (1 – kH + ...)
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        = 2kH + ...
2 + ...

≈ kH

  ∴ ω shallow = gk kH = k gH

  ∴ cshallow =
ωshallow

k
= gH       indep of k!

So shallow-water waves are non-dispersive.
For shallow water waves,   c ↓ as H ↓

Consider wave crests approaching a beach obliquely:

.. ...

H = 5 m

H = 10 m

.

.

A

B
cB > cA since HB > HA

.

.

 slow

fast

slow

fast

fast

slow
x

y

Wave crests turn as they approach beach, end up || to beach.  A
case of wave refraction (bending of wave fronts in
inhomogeneous media -- in this case variable H(x)).

recall that for general surface gravity waves:
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  ω = gk tanh(kH) ,   
 

c =
g
k

tanh(kH)

and that for "shallow water":   kH << 1   so we're led to

  ωshallow = k gH ,        cshallow = gH

Now consider pressure in shallow water conditions:

  
pshallow

ρ = const – gz +
a ω2 ≈ k2gH

k
cosh[k(z+H)] ≈ 1

sinh(kH) ≈ kH
cos(kx – ωt)

       = const – gz + ag cos(kx – ωt)

        = const – g(z – η)     Hydrostatic pressure distribution.

Now look at phase speed c for the general surface wave case
(deep/shallow/whatever):
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 c

 λ

deep
water
waves

shallow
water
wavescapillary

wave
regime
(sfc tension
important)

  c ≈ gH  
c ≈ gλ

2π

  
c =

gλ
2π tanh 2πH

λ

"deep" or "shallow" depends on λ relative to H.  Water that's
100 m deep is "deep" for λ = 10m but "shallow" for λ = 1000 m.

Derive streamfunction for surface gravity wave [recall this is a
2D incomp flow]

  ∂ψ
∂z = u =

∂φ
∂x = aω cosh[k(z + H)]

sinh(kH)
cos(kx – ωt)

integrate w.r.t. z:

(1)
  

ψ = aω
k

sinh[k(z + H)]
sinh(kH)

cos(kx – ωt) + F(x,t)

Similarly, 
  ∂ψ

∂x = – w = ...    Integrate w.r.t. x, to get:

(2)
  

ψ = aω
k

sinh[k(z + H)]
sinh(kH)

cos(kx – ωt) + G(z,t)
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F(x,t) = G(z,t) but fn of x can't be a fn of z -- so no x or z
dependence.  So F(x,t) = G(z,t) = E(t).  But E(t) is irrelevant
since u, w only care about spatial derivs of ψ.  So take E(t) = 0.

∴
  

ψ = aω
k

sinh[k(z + H)]
sinh(kH)

cos(kx – ωt)

Graph streamlines (ψ = const)  at t = 0.

ψ = 0 for:    z = - H  and for:     k
↓

x = ± π
2

, ± 3π
2

, ± 5π
2

, ...

                                              2π/λ

                                               x = ± λ
4

, ± 3λ
4

, ± 5λ
4

, ...

z=0

z = -H

x = 0

drawn for c > 0
(propagation to right)

ψ=0
ψ=0 ψ=0

ψ=0 ψ=0
ψ=0 ψ=0 ψ=0ψ=0ψ=0

at t = 0, η = a cos2πx/λ

x=λ/4 x=3λ/4x=-λ/4x=-3λ/4

[Get dirn of flow (arrows) from soln for u or w, or consider:  for
pattern moving toward right, η is rising to right of crest (so w>0
there) and η is falling to left of crest (so w<0 there).  Arrows on
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bottom give sense of horiz conv/div needed to support this w
field.  Clearly parcel velocity differs from phase speed.].

Group Velocity

Concept of group velocity is appropriate for many different types
of waves (not just surface gravity waves).

Consider 2 waves of equal amplitude and slightly different
frequency and wavelength moving in same direction:

  ω1 = ω + ∆ω, k 1 = k + ∆k

  ω2 = ω – ∆ω, k 2 = k – ∆k

assume      ∆ω
ω << 1, ∆k

k
<< 1

Because of dispersion relation, ∆ω is related to ∆k.

Mean frequency is: 
  ω1 + ω2

2
= ω + ∆ω + ω – ∆ω

2
= ω

Mean wavenumber is:   
 k 1 + k 2

2
= ... = k

Where the waves are in phase (or nearly so) they combine to
form a wave of twice amplitude.  Where they're out of phase,
they kill each other off.
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+

=

+

=

2 waves in phase: 2 waves out of phase:

  η = a cos(k 1x – ω1t) + a cos(k 2x – ω2t)

      = a cos(kx – ωt + ∆kx – ∆ωt) + a cos(kx – ωt – (∆kx – ∆ωt))

  = a cos(kx – ωt)cos(∆kx – ∆ωt) – a sin(kx – ωt)sin(∆kx – ∆ωt)
               cancellation

     + a cos(kx – ωt)cos(∆kx – ∆ωt) + a sin(kx – ωt)sin(∆kx – ∆ωt)

         = 2a cos(kx – ωt) cos(∆kx – ∆ωt)

  ∴ η = A
↓

cos(kx – ωt)
↓

where A ≡ 2a cos(∆kx – ∆ωt)

            effective      carrier wave (mean wave)
            amplitude

Effective amplitude A is itself a wave with wavelength
  λ amplitude = 2π

∆k
>> 2π

k
= λ carrier wave

A propagates at speed    ∆ω
∆k  where ∆ω is related to ∆k by

dispersion reln.  For small ∆k,    ∆ω
∆k

→ dω
dk .  Define   cg ≡ dω

dk



20

or      c g ≡ dω
dk

i     Group velocity.  A vector.

c is phase speed of crests [not a vector, see fig. 7.3 Kundu)

cg is speed of envelope of crests.

node node
c   speed of
individual
crests

cg  speed of
envelope

Energy is trapped between nodes ∴  energy propagates at speed
of nodes (speed of envelope), i.e. speed cg, not phase speed c.

For deep-water sfc waves:

  ω = gk

 
c =

g
k

  cg = dω
dk

= 1
2 k

g
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∴     
 

cg = 1
2

c   [since c > cg, individual crests move through 

      envelope, die at nodes]

For shallow water sfc waves:

  ω = k gH

 c = gH

  cg = dω
dk

= gH

∴      cg = c


