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Buoyancy inhomogeneities on sloping surfaces arise in numerous situations, for
example, from variations in snow/ice cover, cloud cover, topographic shading, soil
moisture, vegetation type, and land use. In this paper, the classical Prandtl model
for one-dimensional flow of a viscous stably stratified fluid along a uniformly
cooled sloping planar surface is extended to include the simplest type of surface
inhomogeneity – a surface buoyancy that varies linearly down the slope. The
inhomogeneity gives rise to acceleration, vertical motions associated with low-level
convergence, and horizontal and vertical advection of perturbation buoyancy. Such
processes are not accounted for in the classical Prandtl model. A similarity hypothesis
appropriate for this inhomogeneous flow removes the along-slope dependence from
the problem, and, in the steady state, reduces the Boussinesq equations of motion and
thermodynamic energy to a set of coupled nonlinear ordinary differential equations.
Asymptotic solutions for the velocity and buoyancy variables in the steady state, valid
for large values of the slope-normal coordinate, are obtained for a Prandtl number of
unity for pure katabatic flow with no ambient wind or externally imposed pressure
gradient. The undetermined parameters in these solutions are adjusted to conform to
lower boundary conditions of no-slip, impermeability and specified buoyancy. These
solutions yield formulae for the boundary-layer thickness and slope-normal velocity
component at the top of the boundary layer, and provide an upper bound of the
along-slope surface-buoyancy gradient beyond which steady-state solutions do not
exist. Although strictly valid for flow above the boundary layer, the steady asymptotic
solutions are found to be in very good agreement with the terminal state of the
numerical solution of an initial-value problem (suddenly applied surface buoyancy)
throughout the flow domain. The numerical results also show that solution non-
existence is associated with self-excitation of growing low-frequency gravity waves.

1. Introduction
In this paper, we extend the one-dimensional Prandtl model (1942) for katabatic/

anabatic flow in a stably stratified fluid to include one of the simplest representations
of surface inhomogeneity – a surface buoyancy that varies linearly with distance
down the slope. Inhomogeneous surface buoyancy fields are ubiquitous in nature.
They arise from irregular snow/ice/soil cover, cloud cover, topographic shading (e.g.
upper slopes are shaded while lower slopes are sunlit), soil moisture (e.g. from a
surface rainfall gradient), variations in vegetation type or coverage, and changes
in land use. A down-slope variation in buoyancy also occurs over melting glaciers,
where the maintenance of a uniform 0 ◦C temperature along the melting surface is
associated with a potential temperature decrease down the slope (a decrease that
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typically exceeds that associated with the environmental lapse rate). Our extended
model is based on a spatial similarity constraint and applies to regions where the
surface buoyancy varies slowly enough in the along-slope direction that it is described
well locally by a linear variation. It may also apply to a transition zone, with slowly
varying buoyancy, bridging two regions of different constant-buoyancy forcings. As
long as a shallowness criterion described in § 2.2 is satisfied, our theory applies, in
principle, to both anabatic and katabatic flows. However, since katabatic flows are
much shallower than anabatic flows, our focus will be on katabatic flows.

The classical Prandtl model describes the flow of a viscous fluid along a uniformly
cooled/heated sloping planar surface in a stably stratified fluid. Flow in the model
has a boundary-layer character (low-level jet topped by weak reversed flow), and
is exact within the Boussinesq framework: along-slope advection of environmental
(mean) temperature balances thermal diffusion, along-slope component of buoyancy
balances diffusion of along-slope velocity component, and all other terms in the
equations of motion and thermodynamic energy are identically zero. Observations
suggest that this simple one-dimensional natural convection model can provide a
good description of the vertical structure of slope flows at night and a reasonable
approximation of slope flows during the day, when the mixing parameters of the
model are appropriately tuned (e.g. Defant 1949; Tyson 1968; Papadopoulos et al.
1997; Oerlemans 1998). With a suitable change of variables, the Prandtl model also
describes the along-slope flow and perturbation salinity field in an oceanic mixing
layer at a sloping sidewall (Phillips 1970; Wunsch 1970; Peacock, Stocker & Aristoff
2004). In this oceanic context, the flow is generated solenoidally by isopycnals that
are forced to approach the sloping boundary at a right angle (zero normal flux
condition). This model also describes the free convective flow of a stratified fluid
along heated vertical plates (Gill 1966; Elder 1965; Shapiro & Fedorovich 2004), and
the familiar Ekman flow of a homogeneous viscous rotating fluid in the presence of
an imposed wind stress or pressure gradient force (Batchelor 1967). The equivalence
of the classical Prandtl and Ekman models is a consequence of the general analogy
between stratified and rotating flows (Veronis 1970).

The Prandtl model has undergone several extensions within its one-dimensional
framework. Gutman & Malbackov (1964), Lykosov & Gutman (1972), Gutman &
Melgarejo (1981) and Gutman (1983) made provision for the Coriolis force, external
winds, time dependence and simple but non-constant eddy viscosities. Egger (1985)
extended the work of Lykosov & Gutman (1972) to include radiative damping.
Grisogono & Oerlemans (2001, 2002) considered more general vertical variations in
the eddy viscosity and presented solutions valid in the WKB approximation. In the
context of oceanic Ekman flows, Madsen (1977) imposed a linearly varying eddy
viscosity and made provision for unsteadiness (response to an impulsive surface wind
stress). The imposition of non-constant eddy viscosities resulted in more accurate
velocity profiles.

For the study of two- and three-dimensional slope flows, a variety of other
approaches have been developed. Egger (1981) and Kondo (1984) obtained two-
dimensional analytical solutions of governing equations that had been linearized about
a state of rest. Despite the limitations of linearity and K-theory with constant coeffi-
cients, these solutions yielded qualitatively realistic circulation patterns in the presence
of non-uniform surface heating and finite basin size. In the hydraulic approach (Ball
1956; Manins & Sawford 1979; Fitzjarrald 1984; Haiden & Whiteman 2005), the
equations of motion, mass conservation and (usually) thermodynamic energy were
integrated vertically to obtain layer–mean budget equations. Closure of the hydraulic
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model usually involved neglect of some terms, introduction of empirical shape factors,
and specification of an entrainment rate at the top of the katabatic layer. The hydraulic
model was successfully applied to katabatic jumps (e.g. Ball 1956), and has provided
good estimates of the depth of katabatic layers (e.g. Doran & Horst 1983). Advances in
computer technology have also made possible three-dimensional numerical mesoscale
modelling (Parish 1984; Parish & Waight 1987; Gallee & Schayes 1994; Atkinson
1995; Bromwich et al. 2001; Klein et al. 2001; Heinemann & Klein 2002; Renfrew
2004) and even large-eddy simulation (Skyllingstad 2003) of katabatic flows.

In this study, we extend the Prandtl model to include surface-buoyancy inhomogen-
eity. The along-slope surface-buoyancy gradient is treated as a constant parameter.
The other parameters of the extended model are slope angle, Brunt–Väisälä frequency,
kinematic viscosity and diffusivity, and the homogeneous part of the surface
buoyancy. We defer treatment of the Coriolis force, cross-slope motions, an external
pressure gradient force and an ambient wind to later studies. The presence of an
inhomogeneous surface buoyancy gives rise to acceleration, vertical motions associated
with low-level convergence, and horizontal and vertical advection of perturbation
buoyancy. Such processes are not accounted for in the classical model.

Although our extended model is two-dimensional and nonlinear, the adoption
of a similarity hypothesis (linear dependence of buoyancy and along-slope velocity
component on the along-slope coordinate), introduced in § 2, allows removal of the
along-slope dependence from the governing equations, and greatly simplifies the
problem. In particular, the Boussinesq equations of motion and thermodynamic
energy in the steady state reduce exactly to a set of coupled nonlinear ordinary
differential equations.

The paper is arranged as follows. The governing equations and similarity model
are introduced in § 2. Solutions for linear and nonlinear free oscillations are presented
in § 3. In § 4, asymptotic solutions of the steady-state equations valid for large values
of the slope-normal coordinate are derived for a Prandtl number of unity. The free
parameters in these solutions are adjusted to conform to lower boundary conditions
of no slip, impermeability and specified surface buoyancy. Formulae are obtained for
the boundary-layer thickness and the slope-normal velocity component at the top of
the boundary layer (entrainment/detrainment velocity). A criterion for non-existence
of steady-state solutions is also obtained. In § 5, solutions from nonlinear numerical
integrations of an initial-value problem with suddenly imposed surface buoyancy in
a fluid initially at rest are presented. The asymptotic solutions are found to be in
excellent agreement with these numerical solutions after the steady state has been
reached. Key results are summarized in § 6.

2. A similarity model for two-dimensional katabatic flow
2.1. Governing equations

We consider two-dimensional katabatic flow in the vertical plane aligned with the
topographic gradient (figure 1). The flow is governed by the following Boussinesq
equations of thermodynamic energy, momentum, and mass conservation:

∂B

∂T
+ (V · ∇)B = −N2 K ∗· V + κ∇2B, (2.1)

∂V
∂T

+ (V · ∇)V = −∇Π + B K ∗ + ν∇2V , (2.2)

∇ · V = 0. (2.3)
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Figure 1. Slope-following coordinate system.

Here Π ≡ (P − P∞)/ρr is a normalized perturbation pressure (P is pressure, P∞
is environmental pressure, which is hydrostatic, ρr is a constant reference density),
V is the two-dimensional velocity vector, T is time, ν and κ are (constant) eddy
viscosity and thermal diffusivity coefficients, respectively, and K ∗ is the unit vector
associated with the Cartesian Z∗-axis, which points in the direction opposite to
the gravity vector g. The buoyancy is defined as B ≡ g(θ − θ∞)/θr (θ is potential
temperature, θ∞ is a height-dependent environmental potential temperature, θr is a
constant reference potential temperature, g ≡ |g|), and the Brunt–Väisälä frequency
as N ≡

√
(g/θr )/dθ∞/dZ∗. We assume θ∞ varies linearly with Z∗, so N is constant.

The neglect of Coriolis terms is appropriate for flows with Rossby numbers
Ro ≡ V/(f L) � 1 (say, of the order of 10). For speeds characteristic of ordinary
katabatic flows (V ∼ 1 m s−1 for weak flow, ∼ 10 m s−1 for strong flow) at mid- to
upper-latitudes (Coriolis parameter f ∼ 10−4 s−1), a Rossby number of 10 is obtained
for a horizontal length scale L of 1 km for weak flow, and 10 km for strong flow.
Thus, our analysis should be appropriate for flows with length scales of those orders.
For flows at lower latitudes, larger horizontal length scales may be considered.

The lower boundary is a planar surface inclined at slope angle α with respect
to the horizontal. We introduce a slope-following Cartesian coordinate system (X,
Z) obtained from the original Cartesian coordinate system (X∗, Z∗) by a rotation
through the slope angle (figure 1). The X-axis is the along- (down-) slope coordinate,
and the Z-axis is the slope-normal coordinate. The flow variables do not vary in the
cross-slope (into page) direction. The unit vectors in the X∗, Z∗ directions are I∗, K ∗,
respectively, while the corresponding unit vectors in the X, Z directions are I , K .
Writing V as V =U I + W K , and noting that K ∗ projects only in the (X, Z)-plane
(so K ∗ · V = U K ∗· I + W K ∗· K = −U sinα + W cosα), (2.1)–(2.3) become

∂B

∂T
+ U

∂B

∂X
+ W

∂B

∂Z
= UN2 sinα−WN2 cos α + κ

(
∂2B

∂X2
+

∂2B

∂Z2

)
, (2.4)

∂U

∂T
+ U

∂U

∂X
+ W

∂U

∂Z
= −∂Π

∂X
− B sinα + ν

(
∂2U

∂X2
+

∂2U

∂Z2

)
, (2.5)

∂W

∂T
+ U

∂W

∂X
+ W

∂W

∂Z
= −∂Π

∂Z
+ B cosα + ν

(
∂2W

∂X2
+

∂2W

∂Z2

)
, (2.6)

∂U

∂X
+

∂W

∂Z
= 0. (2.7)
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In terms of the non-dimensional variables

x ≡ X
sin3/2 α

cosα

√
N

ν
, z ≡ Z

√
N sinα

ν
, t ≡ T N sinα, w ≡ W√

N sinαν
,

u ≡ U

cos α

√
sinα

Nν
, b ≡ B

N cosα

√
sinα

Nν
, π ≡ Π

Nν

sinα

cos2 α
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.8)

(2.4)–(2.7) become

∂b

∂t
+ u

∂b

∂x
+ w

∂b

∂z
= u − w +

1

Pr

(
tan2 α

∂2b

∂x2
+

∂2b

∂z2

)
, (2.9)

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −∂π

∂x
− b + tan2 α

∂2u

∂x2
+

∂2u

∂z2
, (2.10)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= − cot2 α

∂π

∂z
+ cot2 αb + tan2 α

∂2w

∂x2
+

∂2w

∂z2
, (2.11)

∂u

∂x
+

∂w

∂z
= 0, (2.12)

where Pr ≡ ν/κ is the Prandtl number. Since sin α and cosα are non-dimensional,
any arrangement of them in (2.8) would yield a non-dimensional equation set. Our
particular arrangement was chosen, with hindsight, to remove α as a free parameter
from the balance equations for the wind and buoyancy variables in the similarity
model (see below).

2.2. The similarity model

We consider idealized buoyancy fields that vary linearly with the along-slope (x)
coordinate. Such distributions may be good local approximations to real buoyancy
fields that vary gradually with x. In view of (2.9) and (2.12), an along-slope velocity
component u consistent with this buoyancy field should vary linearly with x, and the
slope-normal velocity component w should be independent of x. Equations (2.10) and
(2.11) then indicate that the pressure can have both linear and quadratic dependences
on x, but the quadratic part must be independent of z. The quadratic part corresponds
to the case of a stagnation-point flow (Schlichting 1979), but probably has little
relevance to katabatic flows, and is therefore dropped from further consideration.
Thus, the idealized flow satisfies the following spatial similarity constraint,

w = w0, u = u0 − x
∂w0

∂z
, b = b0 + xbx, π = π0 + xπx, (2.13)

where w0, u0, b0, bx , π0, πx vary with z and t , but are independent of x. Since w itself
is independent of x, it will be convenient to simply use ‘w’ in place of ‘w0’. Note that
the expressions for u and w in (2.13) ensure that (2.12) is satisfied.

In the rest of this study, w, bx and πx will be referred to as divergent flow variables,
while u0, b0, and π0 will be referred to as non-divergent flow variables. As will be
shown below, the divergent flow variables are decoupled from the non-divergent flow
variables.

Since the ∂2/∂x2 diffusion terms in (2.9)–(2.11) vanish identically in the framework
of the similarity constraint, the suitability of the constraint in real applications hinges,
in part, on when these terms can be safely neglected. A scale analysis shows that these
terms are much smaller than the corresponding ∂2/∂z2 diffusion terms for small aspect
ratios H/L 
 1, where H and L are dimensional length scales in the slope-normal
and along-slope directions, respectively. Thus, the constraint should be suitable for
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shallow boundary-layer-type flows. Since katabatic winds reach their peak intensity at
heights of the order of 1–100 m above ground level, the shallowness criterion should
be amply satisfied in many scenarios.

Substituting (2.13) into (2.9)–(2.11), and collecting terms in common powers of x

yields

∂b0

∂t
+ u0bx + w

∂b0

∂z
= u0 − w +

1

Pr

∂2b0

∂z2
, (2.14)

∂bx

∂t
− bx

∂w

∂z
+ w

∂bx

∂z
= −∂w

∂z
+

1

Pr

∂2bx

∂z2
, (2.15)

∂u0

∂t
− u0

∂w

∂z
+ w

∂u0

∂z
= −πx − b0 +

∂2u0

∂z2
, (2.16)

∂2w

∂t∂z
−

(
∂w

∂z

)2

+ w
∂2w

∂z2
= bx +

∂3w

∂z3
, (2.17)

∂w

∂t
+ w

∂w

∂z
= cot2 α

(
−∂π0

∂z
+ b0

)
+

∂2w

∂z2
, (2.18)

0 =
∂πx

∂z
− bx. (2.19)

The boundary conditions for (2.14)–(2.19) are the remote conditions

lim
z→∞

(
∂w

∂z
, bx,

∂u0

∂z
, b0, π0, πx

)
= 0, (2.20)

and the surface conditions

w(0, t) = 0 (impermeability), (2.21)

∂w

∂z
(0, t) = 0 (no-slip on divergent part of u-velocity), (2.22)

bx(0, t) = bxs (specified along-slope buoyancy gradient), (2.23)

u0(0, t) = 0 (no-slip on non-divergent part of u-velocity), (2.24)

b0(0, t) = b0s (specified homogeneous part of surface buoyancy) (2.25)

The reasons for imposing remote conditions on ∂w/∂z and ∂u0/∂z instead of w and
u0 will be discussed in § 4.

We draw attention to several features of this model.
(i) In proceeding from (2.9)–(2.12) to (2.14)–(2.19), the number of independent

variables has been reduced from three, (x, z, t), to two, (z, t). In the steady state,
(2.14)–(2.19) further reduce to ordinary differential equations.

(ii) The system (2.14)–(2.19) is exact within the Boussinesq framework, that is,
for flows constrained to satisfy the similarity constraint (2.13), the governing equa-
tions (2.9)–(2.12) exactly reduce to (2.14)–(2.19). Analogous similarity constraints have
led to exact solutions of the Navier–Stokes equations for planar and axisymmetric
stagnation-point flows and von Kármán–Bödewadt vortices (Schlichting 1979), to
exact solutions of the nonlinear shallow-water equations for basins of elliptical cross-
section and parabolic depth variation (Thacker 1981; Cushman-Roisin 1984, 1987;
Cushman-Roisin, Heil & Nef 1985; Shapiro 1996), and to nonlinear descriptions of
the sea-breeze phenomenon (§ 7.2 of Gutman 1972) and of thermal convection in the
layer between two conducting horizontal boundaries (Fiedler 1999).
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(iii) A partial decoupling of variables in (2.14)–(2.19) greatly facilitates the solution
of these equations. Equations (2.15), (2.17) comprise a closed nonlinear system for
two of the divergent flow variables, w and bx , that can be solved first. Once w and
bx have been obtained, πx can be recovered from (2.19) and (2.20) as

πx = −
∫ ∞

z

bx(z
′, t) dz′. (2.26)

Equations (2.14), (2.16) then form a closed linear system for two of the non-divergent
flow variables, u0 and b0. Once u0 and b0 have been obtained, (2.18) can be integrated
for π0.

(iv) The placement of α in (2.8) is such that α does not appear as a free parameter
in (2.14)–(2.17) or (2.19). Thus, there are only two degrees of freedom associated with
the solution of w and bx: Pr and the surface boundary value for bx (along-slope
surface-buoyancy gradient bxs). This latter parameter is completely determined by
the ratio of along-slope gradient of potential temperature to along-slope gradient of
environmental potential temperature

bxs =
1

N2 sinα

dB

dX

∣∣∣∣
Z=0

= 1 − dθ/dX

dθ∞/dX

∣∣∣∣
Z=0

. (2.27)

There are also only two degrees of freedom associated with the solution of u0 and
b0: Pr and the surface boundary value for b0,

b0s =
B0

N cos α

√
sinα

Nν
, (2.28)

where B0 is the homogeneous part of the surface buoyancy. Although α appears in
(2.18), it only enters the solution for π0 as a multiplicative factor.

(v) If bxs = 0, the divergent flow variables vanish throughout the flow domain, and
(2.14) and (2.16) reduce to the familiar Prandtl model.

3. Free oscillations
Observations of katabatic winds have revealed the existence of low-frequency

oscillations, also called surges, superimposed on the mean katabatic flow (Tyson
1968; Doran & Horst 1981; Stone & Hoard 1989; Helmis & Papadopoulos 1996;
Monti et al. 2002). The periods of these oscillations typically range from a few tens
of minutes to a few hours. A search for free oscillations in our system found two
simple nonlinear solutions of the divergent flow system: a standing-wave (sloshing or
seiching) mode and a propagating mode.

For the special case of a standing wave, in which bx and ∂w/∂z are independent of
z, (2.15), (2.17) reduce to

dbx

dt
= −w′ + w′bx, (3.1)

dw′

dt
− w′2 = bx, (3.2)

where w′ ≡ ∂w/∂z. The reduction is exact in the sense that the terms lost in progressing
from (2.15), (2.17) to (3.1), (3.2) have not been neglected, but vanished identically
under the hypothesis that bx and ∂w/∂z are independent of z.
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In terms of a new variable Ω defined by

w′ = − 1

Ω

dΩ

dt
, (3.3)

(3.2) becomes

bx = − 1

Ω

d2Ω

dt2
, (3.4)

and (3.1) reduces, after fortuitous cancellation of nonlinear terms, to

d3Ω

dt3
+

dΩ

dt
= 0, (3.5)

which is readily solved. We obtain

∂w

∂z
= − cos(t + δ)

β + sin(t + δ)
, (3.6)

bx =
sin(t + δ)

β + sin(t + δ)
, (3.7)

where β and δ are constants. The non-dimensional frequency of unity corresponds
to a dimensional frequency of N sinα. Because of the presence of the sinα factor,
these oscillations are of relatively low frequency. For a typical atmospheric value
of N =10−2 s−1, and slope angles of 1◦, 10◦ and 20◦, the periods are approximately
10 h, 1 h and 0.5 h, respectively, which is in qualitative agreement with the range
of published values of oscillation periods in katabatic flows. The amplitude of the
oscillations is strongly dependent on β , and becomes singular if |β| � 1.

The streamfunction ψ for this oscillation is obtained from (3.6) and ∂ψ/∂x = −w

as

ψ =
cos(t + δ)

β + sin(t + δ)
xz + J (z, t). (3.8)

The first term in (3.8) describes a periodic sloshing flow along hyperbolic streamlines
xz = const. The J term accounts for the non-divergent response to the divergent
oscillation. Unfortunately, we were unable to determine the form of this term.

To help understand the nature of this standing wave, we first consider the linearized
version of (3.1) and (3.2) for the phase in which the along-slope surface buoyancy
gradient bxs is positive (buoyancy increase down the slope). In (3.2), positive bxs

increases slope-normal velocity divergence, w′ > 0, which is associated with positive
slope-normal flow acceleration. In (3.1), a positive slope-normal velocity divergence
reduces the value of the along-slope surface-buoyancy gradient. This linear effect,
which acts as a restoring mechanism, arises as along-slope flow convergence, associated
with positive slope-normal velocity divergence, brings environmental potential tem-
perature isolines closer together. The nonlinear terms in (3.1) and (3.2) modify what
would otherwise be simple harmonic motion. In (3.1), ascent acts nonlinearly to
increase the magnitude of the along-slope buoyancy gradient regardless of the sign
of this gradient. This effect can be visualized if we consider, for example, ascent
in the presence of slope-normal isolines of buoyancy (buoyancy may increase or
decrease down the slope). Along-slope convergence associated with this ascent draws
the buoyancy isolines closer together, increasing the magnitude of the along-slope
buoyancy gradient. In (3.2), the nonlinear vertical advection term, which appears as a
squared slope-normal velocity divergence, acts to increase the slope-normal velocity
divergence regardless of its sign. Since the slope-normal velocity in the standing wave
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varies linearly with height, the flow at higher levels is more efficient in momentum
transport than the flow at lower levels. Accordingly, the descent associated with slope-
normal divergence leads to greater divergence, and ascent associated with slope-
normal convergence leads to greater convergence.

Next, consider propagating divergent disturbances of the form w = w(ζ ), bx = bx(ζ ),
where ζ ≡ z − ct . Applying these forms in the inviscid versions of (2.15), (2.17), yields

(c − w)
dbx

dζ
=

dw

dζ
(1 − bx), (3.9)(

dw

dζ

)2

+ (c − w)
d2w

dζ 2
= − bx. (3.10)

The reduction of (2.15), (2.17) to (3.9), (3.10) is not exact since the viscous/diffusivity
terms do not vanish identically, but are merely neglected.

Equations (3.9) and (3.10) are nearly the same as the equations for the angular
and axial velocities in an axially propagating centrifugal wave in a solid-body-type
vortex (Shapiro 2001), and the flow disturbance represented by (3.9), (3.10) can be
considered a stratified (gravitational) analogue of that wave. The solution is obtained
as

w = −c
√

1 − M2 sin[k(z − ct)], (3.11)

bx = −
√

1 − M2

M2
{
√

1 − M2 + sin[k(z − ct)]} (M2 < 1). (3.12)

Thus, bx is the sum of its mean value 1 − 1/M2 (which is negative), and a wave
that propagates with a non-dimensional wavenumber k and phase speed c =1/(kM).
The non-dimensional frequency ω = ck = 1/M depends on the mean value of bx , and
approaches unity (dimensional frequency of N sinα) in the small-amplitude limit
(M → 1).

Although we were unable to obtain the non-divergent flow response to the
divergent-mode oscillations described above, the unforced temporal and progressive
wave solutions of (2.14), (2.16) are u0 =C cos t, b0 = C sin t and u0 =C sin(kz −
t), b0 =C cos(kz − t), where C is a constant. The dimensional frequency is N sinα for
both types of waves.

Equations (2.14)–(2.17) also admit solutions of the form:

bx = 0, w = −ã(t), b0 = 0, u0 = −ã(t), (3.13)

where ã(t) is an arbitrary function of time. When written in dimensional form, the
combination of terms u0 −w is seen to represent the actual vertical (K ∗) component of
the velocity field, and since this combination is zero in (3.13), these solutions represent
purely horizontal motions parallel to environmental isotherms. We speculate that
waves or other disturbances originating in the boundary layer may have a remote
(environmental) signature in the form of these en masse horizontal disturbances. This
behaviour was found in the temporal decay of the gravity oscillations above the
boundary layer in the numerical integrations (§ 5).
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4. Asymptotic analysis of katabatic flow in the steady state
4.1. Overview

An asymptotic analysis (valid for large z) of the divergent and non-divergent flow
variables is conducted for the steady state. Attention is restricted to a Prandtl number
of unity.

The along-slope surface-buoyancy gradient induces an along-slope velocity diver-
gence (or convergence) and associated subsidence (or ascent) through the depth of the
boundary layer. The divergence vanishes at infinity, but its integral, the slope-normal
velocity component, need not vanish:∫ ∞

0

∂u

∂x
dz = −

∫ ∞

0

∂w

∂z
dz = −w(∞).

We will denote this integrated velocity divergence, or, equivalently, the (minus) remote
slope-normal velocity component, as a ≡ − limz → ∞ w(z). This flow component is
analogous to the axial flow that occurs in von Kármán–Bödewadt vortices above the
boundary layer in response to centrifugal pumping near the boundary (Schlichting
1979). As we will see, our flows have a boundary-layer character, and the slope-normal
velocity component is nearly uniform above the boundary layer. Accordingly, we will
often refer to (minus) a as the slope-normal velocity at the top of the boundary layer.

In the limit z → ∞, (2.20) and (2.14) yield u0 − w → 0, or, since w → − a, u0 → −a.
These u0 and w terms originate in the thermodynamic energy equation, where
they describe along-slope and slope-normal advection of environmental potential
temperature, respectively. As z → ∞, these terms cancel. Thus, the remote flow is
parallel to the (horizontal) isentropes and causes no potential temperature advection.
The existence of fluid layers moving horizontally towards or away from sloping/
vertical lateral boundaries has been observed in a variety of stratified fluid flows. For
example, the detrainment of boundary-layer air into the environment as a horizontal
intrusion at the level of neutral buoyancy has been observed in upslope flow in
the laboratory (Fernando et al. 2001) and in numerical simulations of air pollutant
transport (Lu & Turco 1994). Horizontal intrusions have also been observed in lakes
and reservoirs supplied by inflowing river water that was denser than the basin water
at the surface, but not so dense that it would descend all the way to the bottom of
the basin. Such inflowing water descends the basin sidewall, entrains ambient water,
and flows out into the basin as a neutrally buoyant horizontal intrusion (Imberger &
Patterson 1990, p. 405). The tendency for stratified fluid to flow nearly horizontally
toward an outlet on the sidewall of a reservoir is the basis of the selective withdrawal
technique for improving water quality (Imberger & Patterson 1990, p. 392).

The gross behaviour of the flow as described above is illustrated schematically
in figure 2. A detailed analysis of the divergent and non-divergent flow variables is
presented below.

4.2. Analysis of the divergent flow

With the slope-normal velocity at the top of the boundary layer denoted by a ≡
− limz→∞ w(z), the velocity perturbation component φ(z) is given by

φ ≡ −w − a. (4.1)

The along-slope buoyancy gradient bx is assumed to vanish at infinity, along with
φ. For z large enough, φ and bx are sufficiently small that their products can be
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Figure 2. Schematic diagrams of katabatic flows in which (a) surface buoyancy increases down
the slope (bxs > 0), and (b) surface buoyancy decreases down the slope (bxs < 0). An increase
in surface buoyancy down the slope yields flow deceleration, convergence, and horizontal
along-isentrope intrusion of air into the environment. The sense of the flow is reversed for a
surface buoyancy that increases down the slope.

neglected, and (2.15), (2.17) become

−ab′
x = φ′ + b′′

x, (4.2)

−aφ′′ = −bx + φ′′′, (4.3)

where a prime denotes differentiation with respect to z. As in treatments of Ekman
layers (Batchelor 1967) and one-dimensional slope flows (Gutman & Melgarejo 1981),
(4.2), (4.3) can be combined into a single complex equation. Multiplying (4.2) by i
and adding the result to (4.3), yields

R′′ + aR′ + iR = 0, (4.4)

where

R ≡ φ′ + ibx. (4.5)

Solutions of (4.4) are of the form

R = A exp(i ε) exp(m z), m2 + a m + i = 0, (4.6)

where A and ε are real constants. Solving the quadratic equation for m, yields

m = −a

2
± a

2

(
1 +

16

a4

)1/4[
cos

(
θ

2

)
+ i sin

(
θ

2

)]
, (4.7)

where θ is such that cos θ = a2/
√

a4 + 16 and sin θ = −4
√

a4 + 16. Applying the
half-angle formulae appropriate for the fourth quadrant (3π/2 < θ < 2π), cos (θ/2) =
−

√
(1 + cos θ)/2, sin(θ/2) =

√
(1 − cos θ)/2, introducing the parameter

γ ≡ 1
2

√
1 +

16

a4
+ 1

2
> 1, (4.8)

and choosing the sign in (4.7) to ensure that R vanishes at infinity, transforms (4.7)
into

m = −a

2
− |a|

2

√
γ + i

|a|
2

√
γ − 1. (4.9)

We then obtain bx = Im(R) as

bx = A exp
[
− 1

2
(a + |a|√γ )z

]
sin

(
|a|
2

√
γ − 1z + ε

)
. (4.10)
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Integration of φ′ = Re(R) yields a similarly compact expression for the perturbation
component:

φ = −A

√
a

2
(aγ − |a|√γ ) exp

[
− 1

2
(a + |a|√γ )z

]
sin

(
|a|
2

√
γ − 1z + ε + δ

)
, (4.11)

where δ, the phase shift of φ relative to bx , is defined by

cos δ =
1
2
(a − |a|√γ )√

a

2
(aγ − |a|√γ )

, sin δ =

|a|
2

√
γ − 1√

a

2
(aγ − |a|√γ )

. (4.12)

Using
√

γ
√

γ − 1 = 2/a2 from (4.8), we obtain

δ ≡ tan−1

[
−a

2
(|a|√γ + aγ )

]
,

π

2
< δ < π. (4.13)

Care should be taken to ensure that δ appears in the second quadrant (π/2 < δ < π).
For large |a|, say, |a| > 5, (4.13) is approximated well by δ ≈ π/2 for a > 0 and by δ ≈ π
for a < 0. When evaluating (4.11), it may be more convenient to use (4.12) than (4.13).

These asymptotic solutions are in the form of a spatially decaying oscillation, with
the wavelength λ and e-folding decay length scale Le (which can also be interpreted
as a boundary-layer depth scale, see below) given by

λ =
4π

|a|
√

γ − 1
, Le =

2

a + |a|√γ
. (4.14)

For large values of |a|, λ is approximated well by λ≈ 2π|a|, while Le is approximated
well by Le ≈ 1/a for a > 0, and Le ≈ |a|3 for a < 0. For large positive values of a, Le

is very small, indicating rapid decay of bx and φ away from the surface (increasing
z). Figure 3(a) depicts λ and Le for smaller values of |a|.

Although the asymptotic analysis is valid for large z, surprisingly accurate formulae
for bx and w0 (and a) are obtained by extending the solutions down to the surface
where the lower boundary conditions apply. Imposing (2.22) and (2.23) on (4.5) yields
R(0) = ibxs , or, in view of (4.6),

cos ε = 0, A sin ε = bxs. (4.15)

Applying (2.21) in the form φ(0) = −a, and (4.15) and (4.12) (for cos δ) in (4.11),
yields

a =
bxs

2
(a − |a|√γ ). (4.16)

Since γ > 1, (4.16) shows that a and bxs have opposite signs. This is consistent
with our expectation that a surface buoyancy increase in the down-slope direction
(bxs > 0) should yield down-slope weakening of the katabatic winds, and associated
flow convergence and rising motion (w > 0; a < 0).

Using (4.8) for γ , (4.16) is readily solved for the slope-normal velocity at the top of
the boundary layer:

a = ±2

{[
2

(
1 − 2

bxs

)2

− 1

]2

− 1

}−1/4

, (4.17)

where we take the positive root if bxs < 0, and the negative root if bxs > 0. Equa-
tion (4.17) is shown as a graph in figure 4. This equation yields an intriguing result
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Figure 3. Wavelength λ and decay length scale Le (boundary-layer thickness) from asymptotic
theory as functions of: (a) slope-normal velocity at top of boundary layer, a; (b) bxs , for bxs < 0;
(c) bxs , for bxs > 0.
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Figure 4. Steady-state slope-normal velocity at the top of the boundary layer a as a function
of the along-slope surface-buoyancy gradient bxs . The solid curve depicts the asymptotic
solution (4.17). Circles show the numerical solution after the transients have died out. The
dashed line presents the linear solution a = −bxs/

√
2. Results are shown for bxs < 0 in (a), and

for bxs > 0 in (b).

concerning the existence of solutions. If bxs > 1, the quantity in curly brackets is
negative, and its 1/4 root is complex. However, a, which is a velocity component,
must be real. This indicates that no steady-state asymptotic solution is possible for
bxs > 1. In contrast, if we solve the purely linear versions of (2.15), (2.17), that is, (4.2),
(4.3) with the terms accounting for slope-normal advection (left-hand sides) set to
zero, we obtain a = −bxs/

√
2, which does not breakdown for any value of bxs . Thus,

slope-normal advection is necessary for breakdown of the steady state.
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The asymptotic solutions with A, ε fixed by (4.15), and a given by (4.17) are

bx = bxs exp

(
− z

Le

)
cos

(
2πz

λ

)
, (4.18)

w = −a + bxs

√
a

2
(−|a|√γ + aγ ) exp

(
− z

Le

)
cos

(
2πz

λ
+ δ

)
, (4.19)

w′ = −bxs

√
a

2
(−|a|√γ + aγ ) exp

(
− z

Le

)[
1

Le

cos

(
2πz

λ
+ δ

)

+
2π

λ
sin

(
2πz

λ
+ δ

)]
. (4.20)

The form of these solutions indicates that the decay length scale Le provides an
appropriate measure of the boundary-layer thickness.

When (4.17) is used to replot λ and Le as functions of bxs (figure 3b, c), the
boundary-layer thickness is seen to decrease as bxs decreases in value, and becomes
very small for negative values of bxs . In this case, the decay length scale is much
smaller than the wavelength, and the oscillations are severely damped. Evidently, the
strong subsidence associated with large negative values of bxs results in very shallow
non-oscillatory boundary layers.

4.3. Analysis of non-divergent flow

Defining the perturbation along-slope velocity component κ(z) by

κ ≡ u0 + a, (4.21)

and noting that κ , b0, bx , and φ → 0 as z → ∞, (2.14) and (2.16) with πx supplied from
(2.26) can be approximated as

−abx − ab′
0 = κ + φ + b′′

0, (4.22)

−aφ′ − aκ ′ =

∫ ∞

z

bx(z
′)dz′ − b0 + κ ′′. (4.23)

Equations (4.22) and (4.23) combine into the single equation,

Q′′ + aQ′ + iQ = −aR − i

∫ z

∞
R(z′) dz′, (4.24)

where

Q ≡ κ + ib0, (4.25)

and R has been defined in (4.5). Applying (4.6) in (4.24), yields

Q′′ + aQ′ + iQ = mA exp(mz + i ε). (4.26)

A particular solution Qp of (4.26) is

Qp = Dz exp(mz + i ε), (4.27)

where D =Am/(2m + a). In view of (4.9), D can be rationalized and expressed in
polar form as

D =
A

2

|a|
a

√
2
√

γ

2γ − 1

(
√

γ +
a

|a|

)
exp(iµ), (4.28)
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where

µ ≡ tan−1

[
|a|

√
γ − 1

a(2γ − 1) + |a|√γ

] for a > 0: 0 < µ <
π

2
,

for a < 0:
π

2
< µ < π.

(4.29)

Care should be taken in the evaluation of the inverse tangent in (4.29) to ensure that
if a > 0, µ appears in the first quadrant (0 < µ < π/2), but if a < 0, µ appears in the
second quadrant (π/2 < µ < π). For large |a|, (4.29) is approximated well by µ ≈ 0 for
a > 0, and by µ ≈ π/2 for a < 0.

Affixing the homogeneous solution to the particular solution, we obtain Q as

Q = E exp(mz + iΛ) +
A

2

|a|
a

√
2
√

γ

2γ − 1

(
√

γ +
a

|a|

)
z exp(mz + i ε + i µ), (4.30)

where E and Λ are real constants. As in the divergent flow equations (4.18)–(4.20),
the non-divergent flow variables oscillate with a wavelength λ given by (4.14). Since
the envelope of the waves associated with the particular solution in (4.30) is Qenv ≡
z exp(−z/Le), with Le given by (4.14), these waves amplify prior to decaying with z.
In contrast, the envelope of the bx , w waves provides only exponential decay. Setting
the first and second derivatives of Qenv to zero yields the locations of the envelope
maximum and inflection point as Le and 2Le, respectively. An envelope width Lw

defined as the distance between these points is equal to Le. Thus, figure 3(a) also
applies to the wavelength and envelope width for the non-divergent flow variables.

If we extend (4.30) down to the surface where (2.24), (2.25) apply, we obtain

E =

√
a2 + b2

0s, cosΛ =
a

E
, sinΛ =

b0s

E
, (4.31)

and the solutions for u0 = −a + Re(Q) and b0 = Im(Q), with E, Λ fixed by (4.31),
A, ε fixed by (4.15), and a given by (4.17) are

u0 = −a − bxs

2

|a|
a

√
2
√

γ

2γ − 1

(
√

γ +
a

|a|

)
sin

(
2πz

λ
+ µ

)
z exp

(
− z

Le

)

+

[
a cos

(
2πz

λ

)
−b0s sin

(
2πz

λ

)]
exp

(
− z

Le

)
, (4.32)

b0 =
bxs

2

|a|
a

√
2
√

γ

2γ − 1

(
√

γ +
a

|a|

)
cos

(
2πz

λ
+ µ

)
z exp

(
− z

Le

)

+

[
a sin

(
2πz

λ

)
+ b0s cos

(
2πz

λ

)]
exp

(
− z

Le

)
. (4.33)

5. Numerical integration of the nonlinear system
The structure of the divergent and non-divergent flow variables in the steady state

is sought as the terminal state of an initial-value problem in which the flow starts from
resting stratification, and the surface buoyancy (along-slope buoyancy gradient and
homogeneous part of the buoyancy) is suddenly imposed. We obtain these solutions
by numerical integration. Results are presented for a Prandtl number of unity.
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5.1. Numerical solution of the divergent flow system

The initial-value problem is solved with a version of the forward time centred space
(FTCS) finite-difference algorithm (Fletcher 1988). Rather than work directly with
w, we introduce F ≡ −∂w/∂z, in terms of which w becomes w = −

∫ z

0
Fdz′. The

FTCS approximation of (2.15), (2.17) on a uniform grid with trapezoidal rule for
discretization of

∫ z

0
Fdz′ yields the algorithm:

bn+1
xm = bn

xm + �t
(
1 − bn

xm

)
F n

m + 0.5�tIn
m

(
bn

xm+1 − bn
xm−1

)
+

s

Pr

(
bn

xm+1 − 2bn
xm + bn

xm−1

)
, (5.1)

F n+1
m = F n

m − �t
(
F n

m

)2
+ 0.5�tIn

m

(
F n

m+1 − F n
m−1

)
− �tbn

xm

+ s
(
F n

m+1 − 2F n
m + F n

m−1

)
, (5.2)

where

I n
m = −wn

m

�z
. (5.3)

and

I n
m = I n

m−1 + 0.5
(
F n

m−1 + F n
m

)
(m � 2),

= 0 (m = 1).

}
(5.4)

Here, a superscript n is a time index, a subscript m is a space index, �t is the
time step, �z is the grid spacing, and s ≡ �t/�z2. For the results presented here,
s = 0.5 and �z = 0.04. The boundary values are obtained from (2.20)–(2.23), and the
initial conditions are of no motion and no thermal perturbations. In (2.20), we take
infinity to be top of the computational domain, m =mmax, where the total number
of grid points, mmax , is large enough that any further increase in its value produces
negligible change to the flow variables throughout the computational domain. The
value mmax = 501 was found to be acceptable for the experiments described here.

For all numerical experiments with negative values of bxs (prescribed between −0.1
and −1000), a steady state was obtained after gravity-wave transients had died out.
In contrast, for the experiments in which positive values of bxs were prescribed,
a steady state was not found if bxs exceeded a threshold value b∗

xs in the range
0.54 <b∗

xs < 0.58, somewhat less than the value of 1 in the asymptotic theory. As
bxs approached the threshold value from below, the gravitational oscillations that
developed in the solution grew to larger amplitude, and took longer to damp out.
This behaviour is illustrated in figure 5, which depicts oscillations in w at a fixed
location z =6 for three representative sub-threshold values of bxs (0.5, −0.5, −5). This
location was above the boundary layer for all times in the bxs = −0.5, −5 experiments,
but it was not clear that a boundary layer even existed in the bxs = 0.5 experiment
until after the transients had died out. For values of bxs above the threshold value,
the oscillations increased in amplitude, and the numerical solution eventually became
unstable. A phase portrait of bx = bx[w(t)] at a fixed location for two values of
bxsbracketing the threshold value suggests the existence of an unstable limit cycle
(figure 6). Detailed inspection of the solution curves for w and bx at early times in the
integrations (not shown) indicated that for negative bxs , the oscillatory temporal decay
above the boundary layer was largely in the form of an en masse disturbance (3.13).
In contrast, for bxs = 0.5, the solution throughout much of the domain at early times
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Figure 5. Transient behaviour of w at a fixed location z =6 for three values of the along-slope
surface-buoyancy gradient: bxs = −5 (top curve), bxs = −0.5 (middle curve), bxs = 0.5 (lower
curve). In the latter case, a steady state was reached after a much longer integration period
than displayed in the plot.
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Figure 6. Trajectory in w − bx space at z = 6 for bxs = 0.58 (solid curve) and bxs = 0.54
(dashed curve). These curves suggest the existence of an unstable limit cycle.

was similar to the temporal oscillation (3.6), (3.7) that is, w and bx had a frequency
of unity (period of 2π), w varied linearly with z, and bx was largely independent
of z (and non-zero). In this latter experiment, a boundary-layer-type flow was not
obtained until these disturbances had died out.

One of the referees has proposed a Lagrangian (air parcel) viewpoint for
understanding the preferential development of waves in the experiments with positive
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Figure 7. Flow variables in the steady state as functions of z for bxs = 0.5 and b0s = −1. (a)
The divergent flow variables −w, −w′, bx . (b) The non-divergent flow variables b0, u0. Solid
curves present the numerical solutions. Dashed curves show the asymptotic solutions.
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Figure 8. As in figure 7, but for bxs = −0.5 and b0s = −1.

values of bxs . In the case of positive bxs , parcels in the lower part of the boundary layer
acquire buoyancy through surface forcing (mediated by diffusion), ascend through the
depth of the boundary layer (positive bxs is associated with down-slope weakening
of the katabatic forcing, and thus along-slope convergence), and are then ejected
into the environment. These parcels overshoot their equilibrium level and participate
in buoyancy oscillations. In contrast, in the case of negative bxs , neutrally buoyant
environmental parcels are sucked into the boundary layer where they fall under
the control of surface forcing. Although these parcels eventually acquire buoyancy,
they do so only after they are trapped in the boundary layer, and so are unable to
participate in significant buoyancy oscillations.

We now focus on the steady state. For negative values of bxs and for positive values
of bxs less than the threshold, excellent agreement is found between the steady-state
slope-normal velocity at the top of the boundary layer obtained from the asymptotic
theory and from the numerical integrations (figure 4). More generally, very good
agreement is found between the steady-state numerical and asymptotic solutions for
w and bx throughout the flow domain. Results for bxs = 0.5, − 0.5, −5, are presented
in figures 7–9. These figures show the boundary-layer character of the divergent
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Figure 9. As in figure 7, but for bxs = −5 and b0s = −1.

flow variables (with superimposed decaying spatial oscillations that become apparent
for positive values of bxs) and the nearly uniform slope-normal velocity component
above the boundary layer. They also show the thickening of the boundary layer with
increasing values of bxs , consistent with the asymptotic theory.

The greatest deviation between the asymptotic and numerical solutions appears in
the solution for w at large z. It should be recalled that the plotted asymptotic solutions
have been adjusted to conform to the lower boundary conditions. The adjustment
leads to accurate descriptions of w, w′, bx throughout the flow domain (beyond their
original domain of validity), but at the slight expense of the accuracy of the remote
solution for w.

Data from the final integration time were used to evaluate the forcing terms in the
thermodynamic equation (2.15) and equation of motion (2.17). Figures 10–12 depict
these terms for the values of bxs considered in figures 7–9. For these (and other)
values of bxs , the largest terms in (2.17) are w′′′ and bx , which account for momentum
diffusion and buoyancy. The nonlinear acceleration terms in (2.17) are relatively
small, and remain small even for bxs ranging down to −1000. In contrast, the relative
magnitudes of the terms in (2.15) are strongly dependent on bxs . For small magnitudes
of bxs(0.5, −0.5) the dominant balance is between w′ and b′′

x , that is, between along-
slope advection of environmental potential temperature and diffusion of along-slope
buoyancy gradient. However, it can be noted that even though the nonlinear terms
in (2.15) and (2.17) are relatively small for bxs =0.5 in the steady-state (and are not
dominant in the transient solution) they are responsible for the self-excitation of
gravity waves in the numerical solution leading to the steady state, and lead to the
breakdown of the solution for values of bxsonly slightly greater than 0.5 (e.g. 0.58). For
the larger-magnitude case, bxs = −5, the nonlinear terms wb′

x and bxw
′ (accounting

for along-slope and slope-normal advection of the buoyancy gradient) become larger
than w′, with all three opposing the largest term, b′′

x . In other experiments, as negative
bxs becomes progressively larger in magnitude, w′ becomes negligible, and the (large)
nonlinear terms act in concert to oppose b′′

x . Confirmation of the importance of
the slope-normal advection terms at large magnitudes of (negative) bxs comes from
figure 4(a), where the purely linear solution (nearly vertical dashed line) differs
dramatically from both the numerical solution and the asymptotic solution.
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Figure 10. Terms in the balance equations for w [(2.17), (a)], bx [(2.15), (b)], u0 [(2.16), (c)]
and b0 [(2.14), (d)] for bxs = 0.5 and b0s = −1. The sum of the terms in each figure, shown by
the dashed line almost coincident with the z-axis, is nearly zero, indicating the flow is in a
steady state.

Other numerical experiments reveal that the structure of the steady-state solution
is independent of the manner in which the surface forcing is imposed, that is, whether
bxs is imposed impulsively or is gradually ramped up to its full value after a period of
time. Moreover, the existence (and numerical value) of a threshold b∗

xs for breakdown
of the steady state and the self-excitation of gravity waves for bxs values near this
threshold are found to be independent of the manner (impulsive or continuous) in
which the surface forcing is imposed. The breakdown threshold and self-excitation
phenomenon are also found to be insensitive to increases in the computational
domain (doubling mmax) and to changes in the nature of the top boundary conditions
(replacing ∂w/∂z = 0, bx =0 with ∂2w/∂z2 = 0, ∂bx/∂z = 0), although the solution
details in these cases do change near the top boundary. As one of the examples of
these sensitivity experiments, we present the slope-normal velocity component w as
a function of time at a fixed location for a case where bxs is ramped up gradually
(linearly with time) to a value just exceeding the threshold b∗

xs (figure 13). In this case,
gravity waves do not develop until shortly after the threshold value is exceeded. After
that time, waves develop spontaneously.
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Figure 11. As in figure 10, but for bxs = −0.5 and b0s = −1.

5.2. Numerical solution of the non-divergent flow system

The FTCS discretization of (2.14), (2.16) with πx supplied from (2.26) yields the
algorithm,

bn+1
0m = bn

0m + �tun
0m

(
1 − bn

xm

)
+ 0.5�tIn

m

(
bn

0m+1 − bn
0m−1

)
+ �t�zIn

m +
s

Pr

(
bn

0m+1 − 2bn
0m + bn

0m−1

)
, (5.5)

un+1
0m = un

0m

(
1 − �tF n

m

)
+ 0.5�tIn

m

(
un

0m+1 − un
0m−1

)
+ �t

(
Gn

∞ − Gn
m

)
− �tbn

0m + s
(
un

0m+1 − 2un
0m + un

0m−1

)
, (5.6)

where

Gn
m = Gn

m−1 + 0.5�z
(
bm

xm−1 + bm
xm

)
(m � 2),

(5.7)
= 0 (m = 1),

and other notation is the same as in (5.1)–(5.2). In (5.6), we set Gn
∞ equal to the value

of Gn
m at the top of the computational domain, m =mmax . The boundary conditions

are (2.20), (2.24) and (2.25), and the initial conditions are of no motion and no
thermal perturbation.
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Figure 12. As in figure 10, but for bxs = −5 and b0s = −1.

Experiments showed that the behaviour of the solution and the forcing terms were
complicated and depended strongly on the values of bxs and b0s , although in all
cases the sum −w + u0 approached zero outside the boundary layer (horizontal flow
toward/away from the boundary layer). Results from experiments with b0s = −1 and
bxs =0.5, −0.5, −5 are presented in figures 7–9. The corresponding forcing terms in
(2.14) and (2.16) are presented in (c) and (d) of figures 10–12. Figures 7 and 8 depict
a very good agreement between the asymptotic and numerical solutions for bxs = 0.5,
−0.5, but larger relative errors become evident in figure 9 for bxs = −5. These and
other experiments show that the relative errors in the asymptotic solutions for b0, u0

increase as the magnitude of bxs increases relative to that of b0s . This is not surprising
since, according to (2.16), u0 is linearly forced by both b0 and bx (bx appears in
πx through (2.26)). Thus, for the non-divergent flow variables, we conclude that the
asymptotic theory provides a very good approximation to the nonlinear solution as
long as b0s is larger than bxs .

6. Summary
The classical Prandtl model for katabatic flow of a stably stratified fluid along

a planar surface has been extended to the case where the surface buoyancy varies
linearly with distance down the slope − the simplest framework for studying the effect
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Figure 13. Slope-normal velocity w at a fixed location z =6 for the case where the along-slope
surface-buoyancy gradient bxs is imposed gradually (linearly) with time, up to a peak value of
bxs =0.65 (reached at time t = 64).

of surface inhomogeneity. A similarity model in which the buoyancy and along-slope
velocity fields vary linearly with distance down the slope was shown to be appropriate
in this case. The model removes the explicit along-slope dependence. In the steady
state, the similarity constraint reduces the two-dimensional Boussinesq equations
of motion, thermodynamic energy and mass conservation to a set of nonlinear
ordinary differential equations for divergent-flow variables (along-slope buoyancy and
pressure gradient, velocity divergence) and to linear ordinary differential equations
for non-divergent flow variables (homogeneous part of the buoyancy, velocity and
pressure fields). The governing non-dimensional parameters in this similarity model
are the along-slope surface buoyancy gradient, bxs (which accounts for the surface
inhomogeneity), the homogeneous part of the surface bouyancy, b0s , (the conventional
surface forcing in the classical Prandtl katabatic model), and the Prandtl number.

An asymptotic analysis of the steady state, valid for large distances above the
boundary, is conducted for a Prandtl number of unity. The undetermined parameters
in the asympotic solutions are adjusted to conform to appropriate surface boundary
conditions (no-slip, impermeability and specified buoyancy). The behaviour of the
solutions is strongly dependent on the value of the along-slope surface-buoyancy
gradient bxs . The unsteady problem is solved numerically, and its terminal-state
solutions (after transients have died out) are compared to the asymptotic solutions.
The asymptotic solutions for the divergent flow variables are found to be in very
good agreement with the corresponding numerical results throughout the domain. The
asymptotic solutions for the non-divergent flow variables are found to be in good
agreement with the corresponding numerical results, as long as the homogeneous part
of the surface buoyancy b0s is larger in magnitude than bxs .

The main features of our inhomogeneous katabatic flow model can be summarized
as follows.

(i) A surface-buoyancy decrease in the down-slope direction (bxs < 0; down-slope
strengthening of katabatic forcing), yields along-slope flow acceleration, and
associated subsidence which induces horizontal along-isentrope entrainment of
environmental air into the boundary layer. A surface-buoyancy increase in the
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down-slope direction (bxs > 0; down-slope weakening of katabatic forcing) yields
along-slope flow deceleration, and rising motion throughout the boundary layer. Air
detrained from the boundary layer intrudes horizontally into the environment.

(ii) The asymptotic theory yields a formula for the slope-normal velocity compo-
nent at the top of the boundary layer as a function of bxs . The formula is in excellent
agreement with values obtained from numerical integration of the similarity equations.

(iii) Steady-state solutions for the divergent flow variables exhibit a boundary-layer
character, with the thickness of the boundary layer increasing with bxs . Above the
boundary layer, the divergent flow variables undergo an oscillatory spatial decay away
from the slope. However, this oscillatory behaviour is apparent only for bxs > 0. For
bxs < 0, as bxs decreases in value (increases in magnitude), the decay length scale for the
oscillation becomes much smaller than the wavelength, and the oscillatory behaviour
becomes imperceptible. The strong subsidence associated with large negative values of
bxs results in a very shallow effectively non-oscillatory boundary layer. The steady-state
solutions for the non-divergent flow variables also exhibit a boundary-layer character,
but these solutions are generally more complicated than those for the divergent flow
variables. Above the boundary layer, both divergent and non-divergent velocity
components become uniform and combine to form a horizontal (along-isentrope)
flow toward/away from the boundary layer.

(iv) The divergent and non-divergent flow variables approach a steady state
through an oscillatory temporal decay with a dimensional frequency of N sinα (low-
frequency gravity waves). However, the temporal oscillations are much more pro-
nounced in the cases where bxs is positive. In such cases, air parcels in the convergent
ascent are ejected from the boundary layer into the environment where they overshoot
their equilibrium level and participate in buoyancy oscillations. In contrast, in cases
of negative bxs , neutrally buoyant environmental parcels are sucked into the boundary
layer where their vertical displacements are subsequently curtailed.

(v) Steady-state solutions are obtained for negative values of bxs , but no steady-
state solution exists if bxs exceeds a positive threshold b∗

xs(b
∗
xs = 1 in the asymptotic

solution, 0.54 <b∗
xs < 0.58 in the numerical solution).

(vi) As bxs approaches the threshold value from below, the low-frequency oscilla-
tions that develop in the flow grow to larger amplitude, and take longer to damp
out. This suggests the possibility that even non-periodic (in space or time) surface-
buoyancy inhomogeneity may lead to spontaneous generation (self-excitation) of
low-frequency gravity waves in katabatic flows.

(vii) For bxs above the threshold value, the self-excited oscillations increase in
amplitude, and the numerical solution eventually becomes unstable.

Future work will focus on numerical simulation of the transition from laminar to
turbulent flow regimes and the turbulence structure of inhomogeneous katabatic flows.
We will also determine whether processes that might, in principle, be included within
the similarity framework (e.g. Coriolis force, cross-slope flow, externally imposed
pressure gradient force, ambient winds, or height-dependent eddy viscosities) could
delay or preclude the onset of wave development and instability, or whether the
similarity constraint would need to be relaxed in order to see how the instability
manifests itself in nature. Clearly, the similarity constraint is inconsistent with the
existence of hydraulic jumps and related phenomena known to occur with strongly
decelerating katabatic flows (Ball 1956; Lied 1964; Pettré & André 1991). It is also
possible that the instability marks the onset of a form of convection since bxs > 0
eventually leads to a reversal of sign of the buoyancy flux down the slope. Three-
dimensional numerical simulation of inhomogeneous flow without a similarity
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constraint may be required to study these issues. We will also examine the extent to
which the similarity framework can be applied to the so-called stagnation front, a
convergent structure that sometimes forms along slopes during the evening transition
from anabatic to katabatic conditions (Hunt, Fernando & Princevac 2003; Brazel
et al. 2005).

The authors gratefully acknowledge the referees for constructive comments that
have led to substantial clarification and streamlining of the text. One referee also
provided an insightful explanation for the preferential development of waves in the
experiments with positive values of along-slope surface buoyancy gradient.
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