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Secularly growing oscillations in a stratified rotating fluid
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A simple exact solution of the Boussinesq equations of motion, thermal energy, and
mass conservation is obtained for an oscillatory flow regime in a stably stratified
rotating fluid. The flow is unbounded and characterized by velocity gradients that
vary with time but are spatially uniform—the basic state of Craik-Criminale flows.
The solution describes an oscillatory convergent-divergent flow in which the linear
(normal) strain rates are periodic. However, two of the shear strain rates are forced by
the linear strain rates, and their amplitudes grow linearly with time. C© 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4722351]

I. INTRODUCTION

Idealized flow models in which the velocity components vary linearly with one or more of
the spatial coordinates have been applied in many contexts. Such models have led to wave and
vortex solutions of the nonlinear shallow-water equations,1–4 the multi-layer reduced shallow-water
equations,5, 6 the Euler equations,7 and the Boussinesq equations for a stratified fluid under the
hydrostatic approximation.8 Such models have also been applied to sea-breezes,9 horizontal natural
convection along a thermally perturbed lower surface,10 thermal convection between two conduct-
ing horizontal boundaries,11 katabatic flow along a differentially cooled slope,12 and the flow in
typhoons.13 Solutions of the Navier-Stokes equations for stagnation point flows14 and von Kármán-
Bödewadt vortices14, 15 are also of this special model type.

Unbounded flows consisting of the superposition of (i) a basic flow state in which all of the
velocity components vary (at most) linearly with the spatial coordinates (uniform velocity gradients),
and (ii) a planar wave with time-dependent wavenumber and amplitude were studied by Kelvin,16

Lagnado et al.,17 Craik and Criminale,18 Bayly,19 Cohen et al.,20 and others. As pointed out by Craik
and Criminale,18 the basic state, planar wave, and their sum are exact solutions of the Navier-Stokes
equations. Since the viscous terms in the basic state are identically zero, the basic state is also an
exact solution of the Euler equations. This class of solutions was extended by Craik21 to include
Coriolis and buoyancy forces. Admissible time dependencies for the basic states were explored by
Craik,22 though without Coriolis or buoyancy forces. The essentially inviscid instabilities of planar
waves in some of these basic states have been investigated for flows without buoyancy or Coriolis
forces,23, 24 flows with buoyancy,25, 26 and flows with buoyancy and Coriolis forces.27

The present study is concerned with a simple example of a time-dependent basic state of
Craik-Criminale type that exhibits a secular growth. The solution is a relative of a solution outlined
on page 129 of Craik22 in which the linear (normal) strain rates are formally periodic but became
singular within one period. In the present case, provision for Coriolis and buoyancy forces eliminates
the singularity from the linear strain rates for a range of parameter values. The linear strain rates
are then periodic and well behaved for all times. However, two of the shear strain rates are forced
by the linear strain rates, and their amplitudes grow linearly with time.
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FIG. 1. Cartesian coordinate system (X, Y, Z) used in the analysis. The X and Z axes are obtained by rotating the true
horizontal (X′) and vertical (Z′) axes by an angle α. The Y axis is directed into the page.

II. GOVERNING EQUATIONS

We introduce a Cartesian X, Y, Z coordinate system (Fig. 1) with associated unit vectors I,
J, K, whose X–Z plane contains the gravity vector g, and whose X axis is inclined at an an-
gle α to the horizontal direction X′ (which is normal to g). Attention is restricted to flows that
are two-dimensional in the sense that the dependent variables are independent of Y; however, the
three components of the velocity vector V = U I + V J + W K are generally non-zero. We consider
the Boussinesq equations of motion, thermal energy, and mass conservation for flow of a stably
stratified fluid in a frame of reference that rotates with angular velocity � = �XI + �YJ + �ZK,

∂ B

∂T
+ (V · ∇)B = −N 2K′ · V + κ ∇2 B, (1)

∂V
∂T

+ (V · ∇)V = −∇� + B K′ − 2� × V + ν ∇2V, (2)

∇ · V = 0. (3)

Here ∇ ≡ I ∂ /∂ X + K ∂ /∂ Z , T is time, and K′ is the unit vector aligned with the Z′ axis, which
points in the direction opposite to g. The normalized perturbation pressure is � ≡ (P − P∞)/ρr ,
where P is pressure, P∞ is (hydrostatic) ambient pressure, and ρr is a constant reference density.
The buoyancy is B ≡ g(θ − θ∞)/θ r, where θ is temperature (if medium is a liquid) or potential
temperature (if medium is a gas), θ r is a constant reference value of θ , θ∞(Z′) is an ambient profile
of θ , and g ≡ |g|. The Brunt-Väisälä frequency N ≡ √

(g/θr )dθ∞/d Z ′, kinematic viscosity ν and
coefficient of thermal diffusivity κ of the fluid are assumed to be constant.

We consider α in the range 0◦ < α < 90◦, and introduce the non-dimensional variables

(x, y) ≡ (X, Y )
sin3/2 α

cos α

√
N

ν
, z ≡ Z

√
N sin α

ν
, t ≡ T N sin α, b ≡ B

N cos α

√
sin α

Nν
,

(u, v) ≡ (U, V )
1

cos α

√
sin α

Nν
, w ≡ W√

ν N sin α
, π ≡ �

Nν

sin α

cos2 α
, (4)

in terms of which (1)–(3) expand out as

∂b

∂t
+ u

∂b

∂x
+ w

∂b

∂z
= u − w + 1

Pr

(
tan2 α

∂2b

∂x2
+ ∂2b

∂z2

)
, (5)

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −∂π

∂x
+ σ v − γ w − b + tan2 α

∂2u

∂x2
+ ∂2u

∂z2
, (6)
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∂v

∂t
+ u

∂v

∂x
+ w

∂v

∂z
= −∂π

∂y
− σ u + ε w + tan2 α

∂2v

∂x2
+ ∂2v

∂z2
, (7)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= cot2 α

(
−∂π

∂z
+ b + γ u − ε v

)
+ tan2 α

∂2w

∂x2
+ ∂2w

∂z2
, (8)

∂u

∂x
+ ∂w

∂z
= 0, (9)

where Pr ≡ ν/κ is the Prandtl number, and

ε ≡ 2�X

N cos α
, γ ≡ 2�Y

N cos α
, σ ≡ 2�Z

N sin α
, (10)

are dimensionless parameters.
Attention is restricted to the special class of flows with velocity components given by

u = ux x + uzz, v = vx x + vzz, w = −ux z, (11)

where the linear strain rate ux and the shear strain rates uz, v x , vz vary in time but not space. The
form of w guarantees that (9) is satisfied. Although it is permissible to include spatially constant
variables u0, v0, w0 in (11), we have chosen not to do so because such variables would not affect the
behavior of ux, uz, v x , vz , which is the focus of our analysis.

The forms of b and π consistent with (11) and the governing Eqs. (5)–(9) are

b = b0 + bx x + bz z, π = 1

2
πx x x2 + πxz x z + 1

2
πz z z2, (12)

where bx, bz, πx z , and πz z are functions of time but not of space, and πx x is constant in space and
time (time dependence for πx x is also permissible but will not be considered here). It can be shown
that since u0, v0, and w0 are taken to be zero, pressure terms that vary linearly with the spatial
coordinates drop from consideration.

Applying (11) and (12) in (5)–(9), and collecting terms in common powers of x and z, we obtain

dbz

dt
+ uzbx − ux bz = uz + ux , (13)

dbx

dt
+ ux bx = ux , (14)

duz

dt
= −πx z + σ vz + γ ux − bz, (15)

dux

dt
+ u2

x = −πx x + σ vx − bx , (16)

dvz

dt
+ uzvx − ux vz = − σ uz − ε ux , (17)

dvx

dt
+ ux vx = − σ ux , (18)

− dux

dt
+ u2

x = cot2 α (−πz z + bz + γ uz − ε vz) , (19)

πx z = bx + γ ux − ε vx . (20)
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Since the velocity and buoyancy fields vary linearly with x and z, the diffusion/viscous terms are
identically zero. No approximations were made in proceeding from (1)–(3) to (13)–(20).

It should be noted that if α = 0◦ or α = 90◦, we can non-dimensionalize variables using a version
of (4) in which α does not appear. Application of (11) and (12) then leads to equations similar to
(13)–(20), though containing fewer terms. The solutions (not shown) are similar to those obtained
in Sec. III for 0◦ < α < 90◦, the largest difference being that with α = 0◦ the bx variable is forced
by, but does not affect, ux or vx .

We identify two types of steady-state solutions of (13)–(20) corresponding to flows in which
fluid parcels are (i) not accelerating, (V · ∇)V = 0, or (ii) accelerating, (V · ∇)V �= 0. The former
type of solutions describe flows with u = 0, w = 0 in the following balance:

ux = 0, uz = 0, πx x = σ vx − bx , πz z = bz − ε vz,

(21)
πx z = σ vz − bz, πx z = bx − ε vx .

Eliminating πx z from the last two equations in (21) yields the y-component vorticity equation,

0 = ε vx + σ vz − bx − bz . (22)

Equation (22) expresses a balance between the baroclinic generation of y-component vorticity [−bx

and − bz combine to form the horizontal (X′) derivative of b], tilting by v of the x-component reference
frame vorticity into the y-direction (ε vx ), and tilting by v of the z-component reference frame vorticity
into the y direction (σ vz). One may freely prescribe values for any three of vx , vz, bx , bz , and recover
the remaining variable from (22). The pressure variables then follow from (21).

The accelerating steady-state solutions describe a flow in which fluid parcels are linearly strained
(ux �= 0) and accelerated by the pressure gradient force,

bx = 1, bz = −1, vx = −σ, vz = ε, πxx = −u2
x − 1 − σ 2,

(23)
πz z = −u2

x tan2 α + γ uz − 1 − ε2, πx z = γ ux + 1 + σ ε.

Written in dimensional form and cast in terms of θ , the equations for bx and bz show that θ is constant
(continual straining pulls apart θ surfaces, leading to a vanishing gradient of θ ). The equations for
vx and vz show that the z- and x-components of the absolute vorticity (which are proportional to
vx + σ and −vz + ε, respectively) are zero. One may freely prescribe values for ux and uz, and then
recover the pressure variables from (23).

The remainder of our study is concerned with unsteady solutions of (13)–(20).
Equations (14), (16), and (18) form a closed nonlinear system for ux , vx , and bx and can be
solved first. Those variables include the two non-zero linear strain rates, ∂u/∂x = − ∂w/∂z = ux ,
(the third linear strain rate is zero) and (twice) one of the shear strain rates (∂u/∂y + ∂v/∂x = vx ).
The projection of the streamlines associated with this system on the xz plane are hyperbolas. As we
will see, ux is generally oscillatory, and so the flow associated with it can be described as an alter-
nating convergent-divergent flow (by divergence we mean a positive value of the two-dimensional
divergence of the velocity field, ∂u/∂x + ∂v/∂y, which is just ux in our case). For brevity, we
will refer to ux , vx , and bx as divergent mode variables. Once the divergent mode variables have
been obtained, we can recover πx z as a residual from (20). Then, with πx z and the divergent
mode variables known, the linear system (13), (15), and (17) can be solved for uz, vz , and bz.
We will refer to these latter variables as the non-divergent mode variables. Lastly, πz z can be
recovered from (19).

III. ANALYTIC SOLUTION

A. Divergent mode

To solve (14), (16), and (18), it is convenient to introduce a new variable λ defined through the
Riccati substitution (e.g., Craik,22 Shapiro,4 and Leblanc26)

ux = 1

λ

dλ

dt
. (24)
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Since replacing λ by any non-zero constant times λ leaves (24) unchanged, we are free to normalize
λ in any convenient manner. Applying (24) in (14), multiplying the resulting equation through by
an integrating factor (which is λ) and then integrating, we obtain

bx = 1 + A/λ, (25)

where A is a constant. Similarly, applying (24) in (18), multiplying through by λ and then integrating
yields

vx = − σ + B/λ, (26)

where B is a constant. Application of (24)–(26) in (16) produces

d2λ

dt2
+ (1 + σ 2 + πxx )λ = σ B − A. (27)

If π xx < −1 − σ 2 (pressure gradient force −x πxx points away from pressure maximum at x = 0),
the general solution of (27) is the sum of a constant and a linear combination of growing and
decaying exponential terms. As t → ∞, the growing term dominates (except for special cases where
that term is identically zero), |λ| → ∞, and (24)–(26) indicate that bx → 1, vx → − σ , while ux

approaches a non-zero constant. Thus, as t → ∞, the flow approaches the accelerating steady state
described by (23). However, if the initial conditions are such that λ(t) passes through zero at a finite
time, the solution becomes singular.

In the remainder of the study we restrict attention to values π xx > −1 − σ 2. Here π xx contributes
to a pressure gradient force that points toward a pressure minimum at x = 0 if π xx > 0, and points
away from a pressure maximum at x = 0 if −1 − σ 2 < π xx < 0. The general solution of (27) is

λ(t) = q + cos(ω t), (28)

where

ω ≡
√

1 + σ 2 + πxx , q ≡ (σ B − A)/ω2, (29)

and an arbitrary phase angle has been set to zero. It can be noted that we have normalized λ in (28)
so that the amplitude of its fluctuating part is unity. The dimensional frequency ωdim corresponding
to ω in (29) is of the form ωdim = [N 2 sin2 α + 4�2

Z + ∂2�/∂ X2]1/2, which is the frequency of
inertial-gravity waves modified by a factor of ∂2�/∂ X2.

Applying (28) in (24)–(26) yields

ux = − ω sin(ω t)

q + cos(ω t)
, (30)

bx = 1 + A

q + cos(ω t)
, (31)

vx = − σ + B

q + cos(ω t)
. (32)

With the phase angle set to zero, t = 0 corresponds to the phase when ux = 0.
Consider arbitrary initial values of vx and bx. If bx (0) − σvx (0) + πxx �= 0, A and B can be

expressed as

A = ω2[bx (0) − 1]

bx (0) − σvx (0) + πxx
, B = ω2[vx (0) + σ ]

bx (0) − σvx (0) + πxx
, (33)

and q becomes

q = ω2

bx (0) − σvx (0) + πxx
− 1. (34)

If bx (0) − σvx (0) + πxx = 0, then (16) [with ux(0) = 0] yields (dux /dt)t=0 = 0, while (14) and (18)
yield (dbx /dt)t=0 = (dvx /dt)t=0 = 0. Further differentiating (14), (16), and (18) and evaluating
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FIG. 2. Divergent mode variables ux (solid line), vx (bold line), and bx (dashed line) versus time t for the case with σ = 0.2,
ε = 0.4, πxx = 0, ux(0) = 0, vx (0) = 0.1, and bx(0) = 0.3 (ω ≈ 1.019, q ≈ 2.714). All quantities are non-dimensional.

the results at t = 0, shows that all higher order time derivatives of ux , vx , and bx are also zero. We
thus obtain the steady state (21).

To ensure that the denominators in (30)–(32) do not vanish, we restrict q to values such that
|q| > 1. In view of (34), the condition for (30)–(32) to be free of singularities is

bx (0) − σvx (0) + πxx < ω2 /2, (|q| > 1) . (35)

An example of a divergent mode oscillation is presented in Fig. 2.

B. Non-divergent mode

Applying (24)–(26) and (20) in (13), (15), and (17), and introducing the new variables

b∗ ≡ bz + 1, v∗ ≡ vz − ε, u∗ ≡ uz, (36)

the non-divergent mode equations reduce to

db∗

dt
− b∗

λ

dλ

dt
+ u∗ A

λ
= 0, (37)

du∗

dt
+ A − εB

λ
− σ v∗ + b∗ = 0, (38)

dv∗

dt
− v∗

λ

dλ

dt
+ u∗ B

λ
= 0. (39)

These equations are linear but contain time-dependent (periodic) coefficients. Because an inhomoge-
neous term (A − εB)/λ appears in (38), a non-divergent motion is inevitable. We also note that the
terms involving the Y-component of the reference frame vorticity γ in (15) and (20) have canceled
out. No such terms appear in (37), (38) or (39). Thus, the only effect of γ is the modification of the
pressure variables πz z and πx z through (19) and (20).
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We get a relation between v∗ and b∗ by subtracting A times (39) from B times (37), and dividing
the resulting equation by λ. Integrating and rearranging the result provides

Bb∗ − Av∗ = Cλ, (40)

where C is a constant of integration. To get a single equation for b∗, differentiate (37), and use (37),
(38), and (40) to eliminate u∗ and v∗ from the resulting equation to obtain

d2b∗

dt2
+ b∗

(
σ B − A

λ
− 1

λ

d2λ

dt2

)
= σ C + A(A − εB)

λ2
. (41)

In view of (27) and (29), the coefficient of the b∗ term in (41) is just ω2 and we arrive at

d2b∗

dt2
+ ω2b∗ = σC + A(A − εB)

λ2
. (42)

The homogeneous part of (42) describes an undamped linear harmonic oscillator with natural
frequency ω. In view of (28), the inhomogeneous term in (42) provides a forcing with the same
frequency. We thus anticipate that the solution may exhibit secular growth (see pages 544 and 545 of
Bender and Orszag28 for a classical example of resonance and secular behavior in a forced harmonic
oscillator). The method of variation of parameters yields the general solution of (42) as

b∗ = σC

ω2
+ D cos(ω t) + E sin(ω t) + A(A − εB)

ω
[sin(ωt)I (t) − cos(ωt)J (t)] , (43)

where

J (t) ≡
∫ t

0

sin(ω t̃)

λ2(t̃)
dt̃, I (t) ≡

∫ t

0

cos(ω t̃)

λ2(t̃)
dt̃, (44)

and D and E are constants. The integrals J(t) and I(t) are evaluated as

J (t) = 1

ω

[
1

q + cos(ω t)
− 1

q + 1

]
, (45)

I (t) = q

ω(q2 − 1)

sin(ω t)

λ
− 2

ω (q2 − 1)3/2
tan−1

[
q − 1√
q2 − 1

tan

(
ω t

2

)]
, (46)

where q is defined through (29). To obtain I(t) as a continuous function of time, we must account
for the multi-valued nature of the tan−1 function. Careful consideration of the argument of tan−1 in
(46) shows that its principal value jumps by a factor of π periodically, at times t = (2k − 1)π /ω
(k = 1, 2, 3. . . ). We must therefore increment the principal value by k π at those times to counter
the jumps. The sense of a jump (positive or negative) depends only on the sign of q − 1, and is thus
the same for any particular flow case. Accordingly, the envelope of I(t) increases linearly with time
and provides the anticipated secular behavior.

Applying (43) and (29) in (40), we obtain v∗ as

v∗ = C

ω2
+

[
B D − C

A
− B A − εB2

ω
J (t)

]
cos(ω t) +

[
B E

A
+ B A − εB2

ω
I (t)

]
sin(ω t). (47)

Applying (43) and (44) in (37), we obtain u* as

u∗ =
[

qωD

A
− σC

ωA
− q(A − εB)J (t)

]
sin(ωt) −

[
ωE

A
+ (A − εB)I (t)

]
[1 + q cos(ωt)] .

(48)
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FIG. 3. Non-divergent mode variables u* (solid line), v∗ (bold line), and b* (dashed line) versus time t corresponding
to the divergent mode displayed in Fig. 2, and the initial values u∗ (0) = 0, v∗ (0) = 0, and b∗ (0) = 0. All quantities are
non-dimensional.

The constants C, D, and E are related to the initial values of u*, v∗, and b* by

E = − Au∗ (0)

ω(1 + q)
, C = Bb∗ (0) − Av∗ (0)

q + 1
, D = σ Av∗ (0) − σ Bb∗ (0)

ω2(q + 1)
+ b∗ (0). (49)

The secular parts of the solutions, involving I(t) in (43), (47), and (48), are independent of E, C, and
D, and are thus independent of the initial values of the non-divergent mode variables.

The secular behavior of the non-divergent mode variables is evident in the example depicted in
Fig. 3. The depicted mode was forced by the divergent mode shown in Fig. 2.

It can be demonstrated that if the divergent mode is not present or is in a steady state given by
(21) then the equations for the non-divergent mode admit free oscillation solutions with frequency
defined in (29). In other words, the natural frequencies of the non-divergent and divergent modes
are the same. Thus, if an oscillatory divergent mode is present, its frequency matches the natural
frequency of the non-divergent mode and the non-divergent solution exhibits secular growth.

However, (43), (47), and (48) show that the secular term drops from the solutions in the special
case where A − εB = 0. To better understand this special case, we eliminate πx z from (15) and (20),
obtaining the y-component vorticity equation

duz

dt
= ε vx + σ vz − bx − bz . (50)

If an oscillatory divergent mode is present, ε vx and −bx oscillate with frequency ω and generally
promote secular growth. However, secular growth would not be expected in the special case where
the oscillatory part of ε vx [which (32) yields as ε (vx + σ )] cancels with the oscillatory part of −bx

[which (31) yields as − (bx − 1)], that is, if

ε( vx + σ ) − (bx − 1) = 0. (51)

In view of (31) and (32), the ratio(vx + σ )/(bx − 1) is independent of time. Thus, if (51) is true at
one time, it is true at all times. Applying (33) for A and B in the condition for no secular growth,
A − εB = 0, yields (51) evaluated at t = 0. Thus, A − εB = 0 corresponds to the case where (51) is
satisfied at all times.
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IV. STREAMLINES AND TRAJECTORIES

The stream function ψ , defined through u = ∂ψ /∂z and w = −∂ψ/∂x , is obtained from (11) as

ψ = ux (t)x z + 1

2
uz(t)z

2. (52)

Setting ψ to constant values in (52) yields the projections of streamlines on the xz plane. For small
z, these curves are hyperbolas and the flow is dominated by an alternating in-up and down-out
oscillation. For large z, the curves are largely independent of x and the flow is dominated by a shear
flow in which u oscillates (and grows) in time and varies linearly with z.

To obtain the projections of streamlines on the yz plane, we integrate the equation for the slope
of those curves, dz /dy = w/v = −ux z / (vx x + vzz), obtaining

y = −x
vx (t)

ux (t)
ln |z| − vz(t)

ux (t)
z + a, (53)

where a is a constant of integration.
The trajectories satisfy

dx

dt
= ux (t)x(t) + uz(t)z(t), (54)

dy

dt
= vx (t)x(t) + vz(t)z(t), (55)

dz

dt
= −ux (t)z(t). (56)

Applying (24) in (56) and integrating the result yields the z-component of the trajectory as

z(t) = z(0)
λ(0)

λ(t)
, (57)

where λ(t) is known from (28). Applying (57) and (24) in (54), dividing the resulting equation by λ,
then integrating and rearranging the result provides

x(t) = x(0)

λ(0)
λ(t) + z(0)λ(0)λ(t)

∫ t

0

uz(t̃)

λ2(t̃)
dt̃ . (58)

To evaluate the integral, divide (37) by λ (recall u* = uz) and integrate the result to arrive at∫ t

0

uz(t̃)

λ2(t̃)
dt̃ = 1

A

[
b∗ (0)

λ(0)
− b∗ (t)

λ(t)

]
. (59)

Applying (59) in (58) yields the x-component of the trajectory:

x(t) =
[

x(0)

λ(0)
+ z(0)

A
b∗ (0)

]
λ(t) − z(0)

λ(0)

A
b∗ (t), (60)

where b∗ (t) is known from (43).
From (57), we see that z(t) depends only on the divergent mode, and is thus periodic. In contrast,

(60) shows that both periodic and amplifying functions contribute to x(t). At times t for which sin
(ωt) = 0, the amplifying part of the solution corresponding to sin(ωt)I(t) in (43) vanishes, leaving
only periodic contributions. This happens twice per cycle. The projection of the trajectory curve on
the xz plane thus consists of ever-widening (in x) loops that pass through the same two locations
each cycle. This behavior is illustrated by the sample trajectory displayed in Fig. 4(a).

To obtain y(t), apply the solutions for x(t), z(t), vx (t), and vz(t)[=v∗(t) + ε] in (55), and use
(40) to simplify the resulting expression. With the right-hand side of (55) now expressed as an
explicit function of time, it is straightforward (though tedious) to integrate the equation analytically.
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26.2 20.0 13.8 7.7 1.5 
4.6 10.7 16.9 23.1 29.2 

(a)

26.220.013.87.71.5
4.6 10.7 16.9 23.1 29.2 

(b)

FIG. 4. A sample trajectory for the flow case considered in Figs. 2 and 3. The projections of the trajectory curve on the xz
and yz planes are shown in panels (a) and (b), respectively. The fluid parcel is initially at x(0) = 2.5, y(0) = 0, and z(0) = 0.5.
Parcel locations at selected times are as indicated. Scales of x and y are the same. All quantities are non-dimensional.

The terms involving I and J offer the most difficulty, but by making use of (44)–(46), they can be
integrated by parts. We thus arrive at

y(t) = y(0) +
[

(B − σq)

(
x(0)

λ(0)
+ z(0)

A
b∗ (0)

)
+ Cλ(0)

z(0)

A

(
σ 2

ω2
− 1

)]
t

+ σ

ω

[
Dλ(0)

z(0)

A
− x(0)

λ(0)
− z(0)

A
b∗ (0) − z(0)

ω2
λ(0)

A − εB

q2 − 1

]
sin(ωt)

+ 2z(0)λ(0)

ω (q2 − 1)1/2

[
ε + σ

(A − εB)

ω2(q2 − 1)
λ(t)

]
tan−1

[
q − 1√
q2 − 1

tan

(
ω t

2

)]

+ E
σ z(0)

ωA
λ(0) [1 − cos(ω t)] . (61)

An example of the projection of a trajectory curve on the yz plane is shown in Fig. 4(b). The tendency
of the curve to lean to the right at later times is a consequence of the intensifying vz shear strain rate.

V. SUMMARY

Simple exact solutions of the Boussinesq equations of motion, thermal energy, and mass con-
servation are obtained for an oscillatory flow motion in an unbounded stably stratified rotating fluid.
The flow is considered two-dimensional in the sense that all flow variables are independent of the
Cartesian Y coordinate; however, the three velocity components are generally non-zero. The flow is
characterized by velocity and buoyancy gradients that vary with time but are spatially uniform—the
basic state of Craik-Criminale flows. These constraints reduce the governing partial differential
equations to a set of ordinary differential equations. The solution is obtained analytically by first
solving a sub-set of these equations for a nonlinear divergent mode, and then solving a set of linear
inhomogeneous ordinary differential equations for a non-divergent mode. The solution describes
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a periodic free oscillation of the divergent flow mode and the secular growth that this oscillation
provokes in the non-divergent flow mode.
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