
AN INTRODUCTORY DISCUSSION OF THE STRUCTURE OF

SINGLE-WALLED CARBON NANOTUBES AND THE RELATION

BETWEEN CARBON NANOTUBE STRUCTURE AND THEIR

ELECTRONIC PROPERTIES

DIANA L. GOELLER

Abstract. This paper introduces the carbon nanotube (CNT). After a brief

overview of its history, the structure of a CNT is examined at length. The

sensitivity of the CNT’s electrical properties to its structural geometry is dis-
cussed, touching on the band gap properties of graphene and how these differ

from those of CNTs. The discussion is rounded off with brief consideration of
a developing application of CNTs, the field-effect transistor (CNTFET).

1. Introduction

Carbon fibers have long been known to be a strong, lightweight, and thermally
and electrically conductive material, and have been studied and used in various
industrial applications for over a century. Thomas Edison used carbon fibers in
early prototypes of his electric light bulb. Following WWII, a military-inspired
boom in carbon fiber research led to advancement in long strings of the strong,
lightweight material. A desire for controlled synthesis of crystalline fibers began
in the 1960s with a catalytic chemical vapor deposition (CVD) process, which
occasionally resulted in very thin fibers, but an interest in these was not taken
until the discovery of fullerenes by Kroto and Smalley in 1990. In August of 1991,
M.S. Dresselhaus delivered a discussion of the theoretical existence of carbon fibers
with diameters on the scale of fullerenes, and these were finally observed by Iijima
in 1991. Since then, carbon nanotube (CNT) research has progressed very rapidly
[11].

In 1993, Iijima obtained the first experimental evidence of single-walled carbon
nanotubes via transmission electron microscopy (TEM) [9], and the structure and
physical properties have since been studied in depth. The fundamentals of the struc-
tural and electrical discoveries are discussed below. Meanwhile, industrial engineers
have explored the potential uses of single- and multi-walled carbon nanotubes for
a wide variety of purposes. The short carbon-carbon sp2-hybrid bonds are still
coveted for their incredible strength and light weight, but current research suggests
that their greatest impact in future technology will be in electronics. One important
application of semi-conducting carbon nanotubes will be superficially discussed at
the end of this paper, but the reader is encouraged to investigate further the current
technological research in this field.
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2. CNT Structure

A single-walled carbon nanotube (SWNT) is a seamless cylinder of carbon formed
by a single layer of the honeycomb-structured graphene, capped by rounded fullerene-
structured ends. Most are 0.7-10.0 nm in diameter [11] and have been synthesized
to be several millimeters in length [7]. Due to this large aspect ratio of length to
diameter, the effects of the fullerene end caps on the physical properties of CNTs
may be disregarded, and so we only consider the structure of the effectively one-
dimensional tubes themselves.

Interestingly, a huge variability in nanotube structure, including diameter, arises
from the angle at which the axes of the honeycomb structure lie with respect to
the axis of the tube. 1 depicts the three distinct types of nanotube structures. 1a
and 1b show “armchair” and “zigzag” structures, respectively (the names derive
from the shape of the cross-sectional ring, also depicted in 1. These structures are
achiral, or symmorphic, meaning they contain mirror planes through the nanotube
axis, unlike the nanotube depicted in 1c, which is chiral or non-symmorphic, and
hence this structure is known as “chiral” [11].

Figure 1. CNT structural types viewed longitudinally and in
cross-section. 1a armchair. 1b zigzag. 1c chiral. From [7, p. 7].
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The structure of a nanotube can be completely described mathematically in
terms of three vectors: the chiral vector C⃗h, the translation vector T⃗ , and the
symmetry vector S⃗.

2.1. The Chiral Vector C⃗h. The structure of a carbon nanotube is uniquely
defined by the vector (OA in ??) that lies perpendicular to the axis of the nanotube
[11, p. 37]. Because this vector determines the chirality of the nanotube, it is termed

the chiral vector C⃗h, and it is defined in terms of the real space basis unit vectors
â1 and â2 of the hexagonal lattice of graphene (shown in ??):

C⃗h = nâ1 +mâ2 ≡ (n,m) (n,m integers, 0 ≤ ∣m∣ ≤ n) (1)

This vector defines an equator of the nanotube, such that when the graphene sheet
depicted in ?? is rolled up to produce a nanotube, the ends of C⃗h will be superim-
posed; its length Ch is therefore the circumference of the nanotube. From this we
can determine the diameter dt of the nanotube:

dt =
Ch
π

=

√

C⃗h ⋅ C⃗h
π

=

a

π

√

n2 + nm +m2
=

√

3 ⋅ aC−C
π

⋅

√

n2 + nm +m2 (2)

in which a is the magnitude of the unit vectors ∣â1∣ = ∣â2∣ =
√

3 ⋅ aC−C , and aC−C is
the carbon-carbon bond length (1.44Å in carbon nanotubes).

(a) (b)

Figure 2. Schematic of “unrolled” CNT. The chiral vector C⃗h is
the line segment OA. The translation vector T⃗ is the line segment
OB, parallel to the nanotube axis and perpendicular to C⃗h, the
length of which is the circumference of the nanotube. Cartesian
axes x and y are shown, as are the basis vectors â1 and â2 that
define the unit cell for graphite. C⃗h and T⃗ define the unit cell of
the CNT. The chiral angle θ measures the angle of C⃗h from a line
parallel to â1. 2a shows the symmetry vector, S⃗ while 2b shows the
rotation angle ψ and the translation distance τ that characterize
S⃗, which maps every lattice point in the unit cell, outlined by
rectangle OAB′B. 2a from [11, p. 38]. 2b from [4, p. 28].
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For derivational purposes, it is useful to note that, because â1 and â2 are not
perpendicular but rather at 60○ to one another, the dot products that were implicitly
calculated in (2) are, explicitly:

â1 ⋅ â1 = â2 ⋅ â2 = a
2 cos (0○) = a2 (3a)

â1 ⋅ â2 = a
2 cos (60○) =

a2

2
. (3b)

The values of the integers (n, m) determine the chirality of the nanotube, which
in turn regulates its physical properties. In the case of n = m, the chiral vector
travels in the direction of the x-axis, shown in ??. This results in the “armchair”
structure shown in 1a. In the case where n = 0 or m = 0 (which are symmetrically
equivalent), the chiral vector travels in the direction of â1 (or â2), resulting in
the“zigzag” structure shown in 1b. Recall, these types are both achiral. Any other
ordered pair (n, m) defines a chiral vector [4, 11].

2.1.1. The Chiral Angle θ. Oftentimes, the chirality of a nanotube is described by
the angle θ that the chiral vector makes with the â1 unit vector. This angle, known
as the chiral angle, can be defined by the dot-product relation between the angles:

cos θ =
C⃗h ⋅ â1

∣C⃗h∣ ∣â1∣
=

2n +m

2
√

n2 + nm +m2
. (4)

Similarly, taking the cross product of C⃗h and a⃗1 gives us an equation for sin θ, from
which we can derive the simpler expression

tan θ =
sin θ

cos θ
=

√

3 ⋅
n

2m + n
. (5)

We can check the validity of these equations by considering them in light of what
we already know. In the case of a zigzag structure, for which n = 0, we conclude
from (4) that θ = 0, which is consistent with our definition of the chiral vector for
a zigzag structure, parallel to â1. It is important to note that if m = 0 ≠ n, (4)
still shows that θ = 0, but (5) gives θ = 60○. This corresponds to the chiral vector
aligning with â2 rather than â1, but because of the hexagonal symmetry of the
CNT structure, this is ultimately equivalent. In fact, we could also define tan θ as

tan θ =
√

3 ⋅
m

2m + n
(5′)

which yields θ = 0 when m = 0 and θ = 60○ when n = 0, but again, the two are
symmetrically equivalent. We can therefore limit θ to 0 ≤ θ ≤ 30○, in which case θ
is unambiguously 0 in the case where either n or m is 0.

Armchair nanotube structures, for which n =m, show the other extreme; by (4)
and (5) (or (5′)), we find that θ = 30○, which is likewise consistent with our previous
definition. All other nanotubes, i.e. chiral nanotubes, have 0 < θ < 30○ [4, 11].

2.2. The Translation Vector T⃗ . Together, the chiral vector C⃗h and the transla-
tion vector T⃗ (OB in ??) define the unit cell of a uniform carbon nanotube [7], and

T⃗ is taken to be the unit vector of the one-dimensional structure [11, p. 39]. T⃗ is

perpendicular to C⃗h and parallel to the nanotube axis, and its length T is defined
as the shortest distance in that direction from the lattice point at the tail of C⃗h to
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an equivalent lattice point. Mathematically, this can be expressed in terms of the
unit vectors â1 and â2 of the honeycomb lattice as:

T⃗ = t1 ⋅ â1 + t2 ⋅ â2 ≡ (t1, t2) (6)

where t1, t2 ∈ Z are coprime, meaning gcd(t1, t2) = 1. Then, using C⃗h ⋅ T⃗ = 0 and
equations (1), (3a), (3b), and (6), we can derive expressions for t1 and t2:

t1 =
2m + n

dR
, t2 =

2n +m

dR
(7)

in which dR is gcd(2m + n,2n +m). If we introduce the parameter d as gcd(n,m),
we can perhaps more quickly calculate dR by noting the relation:

dR =

⎧
⎪⎪
⎨
⎪⎪
⎩

d if nm is not a multiple of 3d

3d if nm is a multiple of 3d.
(8)

Then, using (7), we can derive the magnitude of T⃗ = ∣T⃗ ∣ = T as given by:

T = ∣T⃗ ∣ =

√

T⃗ ⋅ T⃗ =

a

dR
⋅

√

3n2 + 3nm + 3m2
=

√

3

dR
⋅ C⃗h (9)

[4, 11].

2.2.1. Size of the Unit Cell. As noted above, the unit cell of a carbon nanotube
is defined by the vectors C⃗h and T⃗ . This unit cell is much larger that of the
isostructural graphene, defined by the unit vectors â1 and â2. Because the unit cell
of graphene is a single hexagon, the quotient of the areas of these unit cells defines
the integer number N of hexagons in the unit cell of the nanotube:

N =

∣C⃗h × T⃗ ∣

∣â1 × â2∣
= 2

n2 + nm +m2

dR
=

2C2
h

a2 ⋅ dR
. (10)

It is also useful to note that each hexagon “owns” two carbon atoms, so there are
2N carbon atoms in each unit cell of a nanotube [4, 11].

2.3. The Symmetry Vector S⃗. The symmetry vector S⃗ is used to generate the
coordinates of all carbon atoms in the unit cell of a CNT from an initial carbon
atom. The coordinates are described by site vectors, which are each an integer
multiples of S⃗,

Vi ≡ iS⃗ (i = 1,2,⋯,N). (11)

Each site vector defines the coordinates of one carbon atom in a hexagon (the unit
cell for graphene), from which the positions of the other carbon atoms belonging

to that hexagon can be derived; the N site vectors defined by S⃗ correspond to
symmetrically equivalent corners of the N carbon hexagons that make up the CNT
unit cell. Like the chiral vector, the symmetry vector is defined by a pair of coprime
integers, (p, q), that represent the coefficients of the basis vectors that define S⃗ for
a particular nanotube:

S⃗ = pâ1 + qâ2 ≡ (p, q). (12)

Defining S⃗ to lie between the chiral and translation vectors in the plane of
the graphene sheet, it is convenient to describe the symmetry vector in terms of
its components parallel to each of these, as shown in ?? and 3. The component
parallel to the chiral vector is proportional and parallel to T⃗ × S⃗, which is given by

T⃗ × S⃗ = (t1q − t2p) ⋅ (â1 × â2) (13)
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where t1q− t2p is an integer. We select p and q or S⃗ to form the smallest site vector
(i = 1) so that

t1q − t2p = 1 (14)

which has a unique solution if gcd t1, t1 = 1.

Figure 3. The projection of the symmetry vector S⃗ onto the chi-
ral and translation vectors separates the rotational and transla-
tional components of the nanotube symmetry. The angle ψ and
translation τ together define the space group symmetry inherent in
the carbon nanotube uniquely defined by the chiral vector ordered
pair (n,m). From [11, p. 41].

Combining equations (2), (9), and (10), we derive an important relation amongst
the three fundamental unit cell vectors. By showing that

0 <
S⃗ ⋅ T⃗

T 2
=

∣Ch × S⃗∣

ChT
=

mp − nq

N
< 1 (15)

we see that

0 <mp − nq ≤ N. (16)

Similarly combining equations (7) and (10), we find another necessary consequence

arising from S⃗ residing within the unit cell:

0 <
S⃗ ⋅ C⃗h
C2
h

=

∣S⃗ × T⃗ ∣

ChT
=

t1q − t2p

N
< 1 (17)

From which we obtain the condition

0 < t1q − t2p < N. (18)

But this is trivially satisfied by equation (14). In fact, in other definitions of the
symmetry vector, t1q − t2p is not necessarily 1, but it is always some integer Q
defined on the interval 1 ≤ Q ≤ N . Here we will define Q = 1 for simplicity.

To determine all N site location vectors defined in (11) of the nanotube unit cell,

we multiply the smallest site vector 1 ⋅ S⃗ by each integer on the interval [1,N]. The
coordinate in the circumferential direction is given by i(t1q − t2p). We can check
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that this defines N distinct sites in the CNT unit cell by noting that NS⃗ = ∣C⃗h∣ = Ch,
which we obtain from combining equations (9) and (10):

NS⃗ ⋅ C⃗h
Ch

=

N ∣S⃗ × T⃗ ∣

T
=

2C2
h

dRa2
⋅

√

3a2

2
⋅

dR
√

3Ch
= Ch. (19)

Therefore, (11) generates all N atom positions in a CNT unit cell.

Geometrically, the vector S⃗ can be broken into a rotation by an angle ψ about
the nanotube axis, which is the component of S⃗ parallel to the chiral vector C⃗h,
scaled by a factor of Ch/dt, and a translation τ along the nanotube axis, which is

the component of S⃗ parallel to the translational vector T⃗ (see 3). Thus S⃗ contains
all the information about the space group symmetry of an arbitrary chiral CNT,
where the symmetry operation is denoted S⃗ = (ψ∣τ). This operator acting on an
atom at a defined origin (0,0) produces the previously defined integers p and q.
Each of the other N − 1 hexagons in the unit cell are denoted by the symmetry
operations (ψ∣τ)2,⋯, (ψ∣τ)N , where (ψ∣τ)N is the identity operation which maps
point O onto point C in 4.

Figure 4. The symmetry vector S⃗ produces the coordinates of
every hexagon in the unit cell of an arbitrary chiral CNT from a
given origin point O by multiplying the smallest site vector, defined
to be S⃗, by the set of integers on the interval from 1 to N , where
N is the number of hexagons in the unit cell of the CNT. As the
symmetry vector spirals along the CNT axis, every hexagon has a
different projection onto the chiral vector Ch until S⃗ has defined
all N sites in the CNT unit cell, at which point the vector NS⃗
will define a point C which is symmetrically identical to the origin
point O. From [11, p. 44].

For exact expressions for the rotation angle ψ and the translation distance τ for
an arbitrary chiral CNT defined by the chiral vector integers (n,m), we take the
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indicated vector products and use equations (9), (10), and (14) to obtain

ψ =

∣T⃗ × S⃗∣

T
⋅

2π

Ch
=

dR(t1q − t2p)
√

3Ch
⋅

√

3a2

2
=

2π

N
(20)

Table 1. Parameters of carbon nanotubes. From [4, p. 29].
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and

τ =
∣S⃗ × C⃗h∣

Ch
=

(mp − nq)∣â1 × â2∣

Ch
=

(mp − nq)T

N
(21)

[4, 11]. A summary of these fundamental relations of the structure of CNTs is given
in Table 1 (taken from [4, p. 29]).

2.4. A Note on Multi-Walled Carbon Nanotubes (MWNTs). So far we
have discussed the structure of single-walled carbon nanotubes (SWNTs), which
can be thought of as a single layer of graphene rolled into a seamless cylinder at
some angle θ, but the existence of SWNTs was not confirmed until 1993 [9], and
today they cannot be synthesized without metal catalysts [10]. Iijima first observed
multi-walled nanotubes (MWNTs), of 2-20 layers, via TEM in 1991 (see 5, from
[7, p. 5]) [8]). MWNTs are coaxial SWNTs, with inter-layer distance similar to
the inter-sheet distance in graphite (3.44Å) within some tolerance δ ∼ 0.25Å [3].
Their physical properties are somewhat different from those of SWNT, and they
are also the topic of much of modern research, not least because they are cheaper
and simpler to produce in bulk. However, these studies and applications are beyond
the scope of this paper.

Figure 5. Multi-walled carbon nanotubes (MWCNTs) as seen
through a transmission-electron microscope (TEM) by Sumio
Iijima in 1991. 5a shows five concentric nanotubes, 5b shows two
concentric nanotubes, and 5c shows seven concentric nanotubes.
From [8, p. 56].
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3. Quantum Mechanics of CNTs

To understand the intimate connection between the geometric structure of a
CNT and its electronic properties, we now investigate in less detail the fundamental
concepts of quantum mechanics that apply to the electric properties of CNTs. These
include the concepts of reciprocal or k-space, the Brillouin zone, Fermi energy, and
the basic concepts of Band Gap Theory.

3.1. Reciprocal Space and Brillouin Zones. Every periodic structure can be
defined by either of two lattices [13]. The real space lattice, defined by the basis
vectors â1, â2, and â3, is the more obvious of the two, and maps the periodicity of
the real structure. In real space, these vectors define the unit cell of graphite. In
two dimensions, â1 and â2 define the unit cell of graphene, as seen above, and the
unit cell of a carbon nanotube is the rectangle defined by the chiral vector C⃗h and
the translation vector T⃗ , shown in ?? as OAB′B, and defined in terms of the real
space unit vectors by equations (1) and (6), respectively. The electronic properties
of the CNT, however, depend on the band gap structure of the lattice, which varies
periodically according to the reciprocal lattice, which exists in what is known as
reciprocal space.

Superficially, a reciprocal lattice is a different way to represent the geometry of
the real lattice. Two-dimensional planes of atoms are represented by their one-
dimensional normal vector, and the magnitude of this vector is proportional to the
reciprocal of the distance between these planes of atoms [2]. Mathematically, this
space has far greater consequences, which allow for complicated calculations, only
a few of which will be touched on here.

Mathematically, a reciprocal lattice is defined by the set of all reciprocal lattice
vectors K that satisfy Bloch’s Theorem and the Schrödinger Equation, which can
be simplified to the condition

e2πiK⃗⋅R⃗
= 1 (crystallographer’s definition) (22)

in which K⃗ is a linear combination of the reciprocal basis vectors

K⃗ = hb̂1 + kb̂2 + `b̂3 (23)

and R⃗ is called a real lattice vector, and is a linear combination of the real space
basis vectors

R⃗ = hâ1 + kâ2 + `â3 (24)

in which h, k, and ` are all integers. The reciprocal basis vectors are all defined in
terms of the real basis vectors, according to the matrix transformation

[b̂1b̂2b̂3]
T
= [â1â2â3]

−1. (25)

By this definition, the reciprocal basis vector b̂1 (between two nearest lattice
points; see ??) has the reciprocal magnitude of real basis vector â1, and lies in the
direction of â2 × â3, and so on for the other basis vectors [2].

Reciprocal space allows for direct comparison between the wave vector k⃗ of any
given particle in the lattice, or of a charge carrier (electron) moving through the

lattice, and an arbitrary reciprocal lattice vector K⃗. Because it is defined by the
reciprocal lattice vectors denoted by the letter K, reciprocal space is also known
as “k-space.” In a graphene sheet and correspondingly in CNTs, in which the
structure is only two-dimensional, only the first two basis vectors are important.
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(a) (b)

(c) (d)

(e)

Figure 6. Brillouin Zones for an hexagonal reciprocal lattice. 6a
From an arbitrary origin, draw a reciprocal lattice vector between
two nearest points. 6b Construct the perpendicular bisector of
this vector. This is a Bragg plane. 6c Repeat following the 6-fold
symmetry. The first Brillouin zone is shaded red. 6d The same
procedure can be used to find higher-order Brillouin zones. 6e The
first six Brillouin zones.
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Reciprocal space is also called Fourier space, because the mathematical transition
from one to the other is a Fourier transform, which is also the relation between
distance and momentum by way of the Hamiltonian operator. Because of this, the
physical representation of distance and momentum is switched in reciprocal space,
and the magnitude of a wave vector is directly proportional to the momentum of
the particle associated with that wave vector. For this reason, reciprocal space is
also called momentum space.

The Brillouin zone or the first Brillouin zone is the primitive cell of the reciprocal
lattice. In two dimensions, its boundaries are defined by the perpendicular bisec-
tors of the reciprocal lattice vectors from an arbitrary origin point to its nearest
neighbors (6a-6c). Note that these boundaries are Bragg planes of waves generated

by each particle, which may be represented by a different wave vector k⃗. Higher-
order Brillouin Zones are found by the same method, and defined so that there are
N − 1 Bragg planes between the origin point and the N -th Brillouin zone (6d-6e),
but the electrical properties of the periodic structure depend only on the energies
in the first Brillouin zone, so we will not consider the higher-order zones [13].

Figure 7. The primitive unit cells of graphene in 7a real space and
7b reciprocal space, also known as the Brillouin zone. The prim-
itive basis vectors are shown for each case. The high-symmetry
points of the reciprocal unit cell are also shown in b): Γ, M , and
K. From [11, p. 25].

For most structures, Brillouin zones are three-dimensional, but because the struc-
ture of SWCNTs is geometrically nearly identical to that of a single graphene sheet,
the first Brillouin zone is a simple, two-dimensional hexagon, as shown above. The
center of the first Brillouin zone is denoted by Γ. In a 2D hexagonal cell, M denotes
the center of a side, and K denotes a corner of the primitive Brillouin zone (7b).
Because each cell owns two carbon atoms, these two points are sometimes differen-
tiated as K and K ′, but because of the symmetry of the hexagonal Bravais lattice,
these have the same quantum, and therefore electronic, properties. Notice that the
reciprocal lattice for the graphene hexagonal real lattice is also hexagonal, but the
real lattice points correspond to the Γ points in the reciprocal lattice, farthest from
any of the reciprocal lattice points. In general, the Brillouin zone is not the same
shape as the primitive cell of the real lattice.
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3.2. Fermi Energy and Band Gap Theory. The sensitivity of the electronic
properties of a CNT to its geometry is best explained by what is known as a band-
folding picture. A wave vector k⃗ is a function of the energy of the particle associated
with it; in momentum space, its magnitude is directly proportional to that of the
momentum of the particle. Because of the translational symmetry of the lattice,
the energy of the particles is also periodic. The periodicity is the reciprocal lattice
vector, K⃗, meaning that all the symmetry of the periodic energy is contained within
the first Brillouin zone. For a given wave vector and its associated potential, the
Schrödinger equation gives two solutions for the particle energy, one associated with
the bonding or valence orbitals (indicated by π in 8a) and one associated with the
anti-bonding or conduction orbitals (indicated by π∗ in 8a). These solutions are
called bands, and they show the energy dispersion around the lattice.

(a) (b)

Figure 8. Band structure of graphene. 8a shows the plot of elec-
tric potential along the high-symmetry triangle outlined in 7b. The
energies are different for the bonding (valence) and anti-bonding
(conduction) bands, indicated respectively by π and π∗. Notice
that the energy bands are degenerate at the K point. 8b shows a
three-dimensional extrapolation of the plotted data in 8a, labelling
the important points of the Brillouin zone as in 7b.

Mathematically, it is difficult to solve for the energy dispersion relations for all
values of k⃗, so only the directions of high symmetry within the Brillouin zone are
considered. In graphene, this is the triangle formed by the points Γ, M , and K,
as shown in 7b. The resulting qualitative potential plot is shown in 8a, and the
extrapolated three-dimensional image, showing the energy dispersion relations over
the whole first Brillouin zone, is shown in 8b. This is known as the band structure
for the lattice [11].

The bonding and anti-bonding bands are separated at each k⃗ by some finite
energy, represented along the vertical axis in the band structure models in 8a and
8b. In some cases, along the high-symmetry directions of the Brillouin zone, this
energy difference might be zero, in which case the energy bands are said to be
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degenerate. In graphene, the energy states are degenerate at all of the K and K ′

points in the lattice, and the energy here is the Fermi level [11]. This is the energy
state that an arbitrary electron has a 50% chance of occupying at any given time.
The degeneracy allows electrons to move freely between bands, which corresponds
in real space to moving freely through the lattice. This explains why graphite is
a good conductor. If the energy bands are not degenerate for any k⃗ in the band
structure, there is said to be a (complete) band gap, which inhibits electrons from
moving about the structure. If the band gap is relatively small, electrons are only
somewhat inhibited, and the result is a semi-conductor [10]. As we will soon see,
the electronic properties of CNTs are not identical to those of the unrolled graphene
sheet. Rather, they depend on the ordered pair of integers (n,m) that define the

Chiral vector, C⃗h.

4. Electrical Properties of CNTs

4.1. Metallic and Semiconducting CNTs. In a carbon nanotube, the compo-
nent of the wave vector k⃗ in the direction of the chiral vector C⃗h is denoted by k⃗C ,
and is constrained by the cylindrical nature of the nanotube by the condition

k⃗C ⋅ C⃗h = 2πj j ∈ Z. (26)

Therefore, the allowed wave vectors are quantized, and dependent on the diameter
dt of the nanotube, which is in turn dependent on the helicity

C⃗h = πdt. (27)

This quantization leads to the different electric properties of CNTs of different
diameters, as explained below. Meanwhile, the component of the wave vector k⃗ in
the direction of the tube axis, parallel to the translation vector T⃗ , denoted by k⃗T ,
is continuous.

If (and only if) the K and K ′ points of the Brillouin zone lie on wave vectors
allowed by the quantization constraint outlined above, the nanotube is metallic.
As it happens, this occurs only for armchair nanotubes, when n = m. Otherwise,
a band gap exists between the bonding and anti-bonding orbitals for all allowed
wave vectors, and the nanotube is a semiconductor (the degree of conductivity
depends on the size of the band gap, but this is never so wide as to be considered
an insulator). However, in the special case where n−m = 3j, where j is an integer,
the band gap between the valence and conduction bands is so small that, at room
temperature, the nanotube is effectively metallic. These nanotubes are sometimes
distinguished from zero gap and large gap semiconductors by the term “tiny gap”
semiconductors (9) [10].

4.2. Electrical Transport in CNTs. Carbon nanotubes are characterized by
long cylinders of tightly-bonded carbon atoms. This cylindrical nature makes per-
fect, i.e. defect-free, CNTs effectively one-dimensional, for all physical purposes.
The smooth walls of carbon atoms connected by short and strong covalent bonds
eliminate electron scattering in all directions except forward and backward along
the tube, which does not greatly hinder electrical transport. Another common
source of resistance in most electrical conduction is lattice vibration, but this is
again minimized in the unique CNT structure by the very tight carbon-carbon
bonds [1].
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Figure 9. Band gaps in CNTs at K points in the Brillouin zone.
9a depicts an armchair CNT, which is metallic, as evidenced by
the strong overlap in the lower bands of the valence and conduc-
tion orbitals. 9b depicts a tiny-gap semiconducting CNT, which is
effectively a metallic CNT under certain conditions, including at
room temperature. 9c depicts a true semiconducting CNT, with a
small but complete band gap at the K point. From [11, p. 63].

The only sources of resistance in electron transport via CNTs, then, occur at
the ends of the channels, where the one-dimensional CNTs connect to the three-
dimensional metallic electrodes. However, because of the same circumferential
quantization mentioned above, there are a small number of discrete energy states
or modes that overlap with the continuous energy states of the electrodes. Because
only energy states that overlap from the nanotube to the electrodes on either side
can transport electrons, this leads to a quantized contact resistance, designated by
RC . The magnitude of the resistance is a function of the number of modes M in
the CNT that have energies lying between the Fermi energies of the electrodes

RC =

h

2e2M
. (28)

in which h is Plank’s constant and e is the fundamental electric charge. For a
metallic (armchair) CNT, M = 2, so that RC = h/4e2 = 6.45kΩ [1].

There are many other possible sources of resistance in CNT electronics, but when
these are minimized so that the only resistance is this quantum resistance, electron
transport in a CNT is said to be ballistic, meaning that no carrier scattering or en-
ergy dissipation takes place within the CNT [1]. This was once merely a theoretical
concept, but since more work has been done with CNTs, researchers have started
talking about this property of CNTs and the potential consequences in future ap-
plications. CNTs can only behave as ballistic conductors over a certain length,
which depends on their structural perfection, the temperature, and the strength of
the driving electric field, but these do not greatly hinder the importance of CNTs
in future applications; ballistic transport can be achieved for lengths typical of and
smaller than modern electronic devices (less than or equal to 100 nm), and even in
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much longer sections, transport in CNTs can be as much as 1000 times higher than
in bulk silicon [1].

Understanding some of the basic significance of CNTs in electronics, we now
briefly turn our attention to one particular application of semi-conducting CNTs
that shows high promise in the coming decades: the carbon nanotube field-effect
transistor (CNTFET or CNFET).

5. The Future of Electronics: CNT Field-Effect Transistors

5.1. Current Research. Flow of electricity in a semiconductor requires either an
external source of energy, such as heat or light absorption, to move the charge
carriers over the energy band gap, or else a modulation of the gap that allows the
electrons to freely cross it. In most modern electronics, an external electric field acts
as a switch on the gap to allow electrons to pass (the ON position) or not (the OFF
position). This modulating electronic field is known as the field-effect transistor
(FET). Generally, a semiconducting channel connects two electrodes known as the
source and the drain. Between these is a third electrode called a gate, and these
three are all separated by some insulating film. An electric field applied at the
gate with respect to the source will alter the conductance of the semiconducting
channel, either allowing charge carriers (either electrons, carrying negative charge,
or the absence of electrons known as a hole carrying positive charge and moving
in the opposite direction) to flow freely in the material, or to inhibit their travel
entirely, depending on its direction [1].

Currently, the standard FET is made from silicon and silicon dioxide, and is
known as a metal-oxide semiconductor field-effect transistor (MOSFET). Casual
observation, now know as Moore’s Law, describes how the size of these electronics
have halved approximately every two years for decades, but current technology now
approaches the theoretical, minimum limits of this scaling. This has inspired wide-
spread technological research for yet smaller, faster, and more efficient alternatives
[1].

In 1998, Tans, et. al. produced a SWCNT FET that could operate at room
temperature, and this is so far the only device to meet this important criteria for
practical implementation [12]. Researchers have experimented with different types
and styles of gate construction, and so far found that the“wrap-around” gate is
most efficient, as shown in 10. In this configuration, especially because of the
CNT’s small diameter, the gate has maximum ability to regulate the potential of
the channel. This strong so-called coupling between the gate and the channel allows
the devices to be made even smaller (shorter) without incurring what are known as
‘short-channel effects,’ an infamous phenomenon resulting in loss of control of the
device by the gate field [1].

Research in this field is still young but very extensive. Studies have established
many advantages of CNTFETs over MOSFETs, including much higher current
densities [5], much lower capacitance and somewhat lower operating voltage [1],
roughly three times the on-current per unit width, compatibility with high-κ (more
efficient) gate dielectrics, and double the carrier velocity [6]. They are also com-
patible with our current silicon technology, and can be scaled even smaller, and
therefore faster, than silicon-based devices [5].
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Figure 10. Wrap-around style CNTFET. The contact around the
whole circumference of the CNT results in much greater efficiency
than other styles of CNTFET connections. From [1, p. 607].

5.2. Technological Limitations and Future Research. Currently, the greatest
limitation to CNT-based electronics is cost, which is dependent on researchers’ abil-
ity to grow bulk wafers of structurally perfect CNTs, though recent advancements
in chemical vapor deposition (CVD) technology may reduce this cost dramatically
in the near future [5].

Future CNT-based transistors will likely operate at speeds on the scale of THz,
and offer the potential for logic devices and cheaper and simpler self-assembly based
fabrication. CNT-based transistors are already being used as biosensors. CNT-
based light sources and detectors may lead to intra-chip optical communications,
and individual molecule-level spectroscopy. The ballistic conduction of metallic
CNTs may eventually lead to the development of single-component electronics, in
which both the active devices and the connections between them are all based on
the molecule carbon [1]. This is not even to mention the many other creative and
useful applications of CNTs that scientists and engineers have thought up and are
developing even now. These developments will define our technology in the decades,
for decades, to come.

6. Conclusion

This paper introduced the concept of a carbon nanotube, initially in terms of its
structure, and then in terms of its unique electronic properties. The physical con-
struction of CNTs was thoroughly explained in terms of the chiral, translation, and
symmetry vectors. The electronic properties of a CNT follow from its structure,
which can be defined exactly and uniquely by either the ordered pair of integers
(n,m) that define the chiral vector or the angle of rotation and distance of trans-
lation (ψ∣τ) that define the symmetry vector. CNTs are divided into three types,
based on their symmetry: armchair, zigzag, and chiral.

To better understand how the electronic properties of a CNT are described,
background is provided on the concepts of reciprocal space and a reciprocal lattice.
The first Brillouin zone is the primitive cell in a reciprocal lattice, and this is
the smallest unit of translational symmetry within the energy band structure of a
lattice. Because a CNT is geometrically similar to a rolled-up sheet of graphene,
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the band structures are similar for graphene and for a CNT, but the helicity of the
CNT affects its conductivity, and an arbitrary CNT can range almost continuously
from metallic to semi-conducting, though only three types are ever differentiated:
metallic CNTs consist only of the armchair structures, and the rest are either
tiny-gap semiconductors, which are effectively metallic at room temperature, or
small-gap, true semiconductors. Band gaps in a graphitic structure are never large
enough to designate an insulator.

Though CNTs have many highly valuable characteristics, these and other highly
valuable electric properties have inspired thousands of scientists and engineers
around the globe to create the next generation of electronic devices, that will be
smaller, faster, and lighter than the best silicon-based technology now or ever. One
of the most important of these applications is the field-effect transistor, which is
the basis of most modern microelectronics. If modern silicon-based MOTFETs are
effectively replaced with CNTFETs, the technological advances that will follow are
too numerous to list and almost too incredible to imagine. With the rapid advance-
ment of this technology since CNTs were first discovered less than twenty years ago,
it seems only a matter of time before this imagining becomes reality.
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