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[1] The usefulness of global-average diurnal temperature
range (DTR) as an index of climate change and variability is
evaluated using observations and climate model simulations
representing unforced climate variability and anthropogenic
climate change. On decadal timescales, modelled and
observed intrinsic variability of DTR compare well and
are independent of variations in global mean temperature.
Observed reductions in DTR over the last century are large
and unlikely to be due to natural variability alone.
Comparison of observed and anthropogenic-forced model
changes in DTR over the last 50 years show much less
reduction in DTR in the model simulations due to greater
warming of maximum temperatures in the models than
observed. This difference is likely attributed to increases in
cloud cover that are observed over the same period and are
absent in model simulations. INDEX TERMS: 1610 Global

Change: Atmosphere (0315, 0325); 1620 Global Change: Climate

dynamics (3309); 3309 Meteorology and Atmospheric Dynamics:

Climatology (1620). Citation: Braganza, K., D. J. Karoly, and

J. M. Arblaster (2004), Diurnal temperature range as an index of

global climate change during the twentieth century, Geophys. Res.

Lett., 31, L13217, doi:10.1029/2004GL019998.

1. Introduction

[2] While changes in global mean surface temperature are
a useful indicator of climate change and variability, changes
in daily maximum and minimum temperatures provide more
information than the mean alone. This is because trends in
mean surface temperature can be due to changes in either
maximum or minimum temperature, or relative changes in
both. Over the last 50 years, observed surface warming over
land has been associated with relatively larger increases in
daily minimum temperatures (Tmin) than in maximum
temperatures (Tmax) [Karl et al., 1993; Easterling et al.,
1997; New et al., 2000], though both show significant
increases. Hence, there have been decreases in observed
area-average diurnal temperature range (DTR) over land
during the last 50 years. This decrease is not spatially
uniform in observations [Easterling et al., 1997] or in
general circulation models (GCMs) [Stone and Weaver,
2003].

[3] Dai et al. [2001] and Stone and Weaver [2002, 2003]
showed that anthropogenic forcing by greenhouse gases and
sulphate aerosols in GCMs caused small (�0.2�C)
decreases in global DTR over the 20th century. In this
paper, we assess global diurnal temperature range (DTR)
over land as a possible index of radiative forced climate
change that provides information that is independent from
global mean temperature. Recent studies [Karoly et al.,
2003; Braganza et al., 2003] have shown that a set of
multiple climate indices, that are independent in internal
climate variations and show a coherent response to green-
house forcing, provide additional information for the detec-
tion and attribution of climate change in much the same
manner as spatial fingerprints of climate change. The
definition of additional indices such as DTR may be useful
in defining a signature of observed climate change that is
less likely to show a common response to different radiative
forcing mechanisms.
[4] Global-mean DTR is also a useful diagnostic index

for the evaluation of GCM-simulated climate variability.
Whereas previous studies have been limited to analysis
from one or two models, here we show a comparison of
observed variability and trends in Tmax, Tmin and DTR with
simulations of unforced climate variability and anthropo-
genic forced climate change from five GCMs. These repre-
sent a range of differences in model resolution, the
parameterization of radiative effects and climate sensitivity.
The method we follow is similar to Braganza et al. [2003],
who used multiple indices of area-average surface temper-
ature to describe observed and simulated climate change.

2. Data Sets

[5] In this study, we use the University of East Anglia’s
Climatic Research Unit data set CRU TS 2.0 (T. D. Mitchell
et al., A comprehensive set of high-resolution grids of
monthly climate for Europe and the globe: The observed
record (1901–2000) and 16 scenarios (2001–2100), sub-
mitted to Journal of Climate, 2003) for observed maximum
and minimum temperatures over land and for observed total
cloud amounts. It must be noted that CRU TS 2.0 has not
had the effects of urbanisation and land use changes
removed. While the effect of urbanisation on trends in
maximum and minimum temperatures has been estimated
to be very small on the global scale [Easterling et al., 1997],
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the potential effect on DTR due to the differential impact of
urbanisation on Tmax and Tmin remains unclear.
[6] Here, we transformed the 0.5� monthly grid of the

original data set into a 5� latitude and longitude grid using
area averaging. We then removed monthly grid boxes that
did not contain any station data. Finally, the data was
masked to exclude grid boxes with less than 40 years of
data since 1901. The effect of missing data within any
individual year for individual grid boxes had very little
impact on the annual mean. We used a fixed data mask
rather than a temporally-varying mask as changes in global-
mean DTR were found to be relatively insensitive to time
variations in the data coverage since 1910. The station-
based region of coverage for maximum and minimum
temperatures (shown in Figure 1) and the region of coverage
for total cloud cover in CRU TS 2.0 is essentially the same.
[7] For the GCM simulations, we have data available from

five global coupled ocean-atmosphere climate models. They
are CSIRO Australia’s CSIRO Mk2 [Gordon and O’Farrell,
1997; Hirst et al., 2000], the UK Met Office Hadley Centre
HadCM2 [Johns, 1996; Johns et al., 1997], the Max-Planck-
Institute fur Meteorologie ECHAM4 [Roeckner et al., 1996],
the National Center for Atmospheric Research (NCAR)
Parallel Climate Model (PCM) [Washington et al., 2000]
and the Canadian Centre for Climate Modelling and
Analysis (CCCMA) second version global climate model
(CGCM2) [Flato and Boer, 2001]. PCM is the only model
that does not use surface flux adjustments in maintaining a
stable control climate simulation.
[8] The model simulations include two long control

simulations, where external forcing factors have been left
unchanged, 1000 years from CSIRO Mk2 and 530 years
from PCM. For HadCM2 and ECHAM4 we have 240 years
of control simulation data and 201 years of data for
CGCM2. The forced experiments simulate observed anthro-
pogenic changes to radiative forcing over the 20th century
through changes to greenhouse gases and sulphate aerosols
(GS). HadCM2, CSIRO Mk2 and CGCM2 express green-
house gases as equivalent CO2, while ECHAM4 and PCM
explicitly represent the effects of major and minor green-
house gases. ECHAM4 and PCM also include explicit
treatment for the direct radiative effects of aerosols. For
GS simulations, we have a 2-member ensemble from
ECHAM4, a 3-member ensemble fromCGCM2, a 4-member
ensemble fromHadCM2, a 5-member ensemble fromCSIRO
Mk2 and a 7-member ensemble from PCM. Aerosol changes
in CSIRO Mk2, HadCM2 and CGCM2 have been
parameterised using relative changes to surface albedo in
the northern hemisphere, while ECHAM4 and PCM include
the direct radiative effect of historic aerosol concentrations.
The PCM GS runs also include historic changes to tropo-
spheric and stratospheric ozone. None of the models used
here represent the indirect radiative effects of aerosols on
clouds.

3. Simulated and Observed Changes in
Diurnal Temperature Range

[9] DTR is defined here as the difference between the
mean daily maximum temperature (Tmax) and minimum
temperature (Tmin), at each grid point in the data mask
region for each season, and then averaged annually and

globally. Following Braganza et al. [2003], we first look at
the variability and correlation structure of DTR, to deter-
mine how closely global DTR is associated with global
mean temperature (Tmean) for unforced climate.
[10] We use the decadal standard deviation as a measure

of variability in DTR. Interannual changes were smoothed
using a 21-point binomial filter (half power at periods of
10 years). For observations and transient model experi-
ments, standard deviations are calculated for the period
1901–2000. For the control runs, we use 100-year samples,
taken at 50-year intervals, to estimate the mean standard
deviation. Error estimates are taken from the 5–95%
confidence interval from the range of 100 year samples.
Uncertainty for decadal scale variability in the control is
also used to estimate uncertainty in the decadal smoothed
GS forced response for each of the models. For ECHAM4,
HadCM2 and CGCM2, the relative shortness of the control
time series is a limitation, although results are generally
similar to those for CSIRO Mk2 and PCM.
[11] Correlation of Tmax, Tmin and DTR with Tmean is

calculated using the same sampling method. Global-mean
temperature has been calculated after applying the observed
DTR coverage mask to the data, hence Tmean will differ
(with expected greater variability) from the mean calculated
with unrestricted coverage, and is more similar to the mean
temperature over land.
[12] Table 1 shows the decadal standard deviations

of Tmax, Tmin, DTR and Tmean. Estimates of observed
unforced variability are calculated by removing a 4th order
polynomial trend from the observed time series. This
method of detrending has been evaluated by Braganza et
al. [2003] and was shown to provide a reasonable estimate
for comparison with intrinsic climate variability in the
models. For Tmax, Tmin and Tmean, the magnitude of the
observed decadal, detrended standard deviation is similar to
or smaller than that from each of the control runs, with
control variability larger in the 240 year data sets. For DTR,
the variability of the detrended observations is not signif-
icantly different from model estimates of climate noise.
[13] Also shown in Table 1 are the unforced decadal

correlations of Tmax, Tmin and DTR with Tmean. As
expected, all model estimates of intrinsic variability show
a large association between Tmax, Tmin and Tmean tempera-
ture. For DTR, the unforced association with global mean
temperature is much smaller and much more variable. The

Figure 1. Data mask used for observed and GCM DTR
data. Shaded regions represent areas that were included in
the mask with more than 40 years of data during the period
1901–2000.
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correlation between DTR and Tmean in the control simula-
tions from all of the models has relatively large variability
for 100 year samples. Hence the strength of the relationship
is sensitive to the size of the control run and reduces the
significance of results for the smaller control time series.
For the long control integrations of CSIRO Mk2 and PCM,
the correlation of DTR with Tmean is not significantly
different from that observed, with essentially zero mean
correlation. It therefore seems reasonable to conclude that
DTR is independent of Tmean for internal climate variability
and therefore should contain additional information for the
attribution of global climate change.
[14] Next, we compare observed and simulated trends in

DTR over the latter part of the 20th century. Figure 2 shows
the magnitude of 50-year linear trends in the indices,
including Tmean, for the period 1951–2000. This period
has the largest and most consistent data coverage. Trends
from each model represent the ensemble mean trend.
Uncertainties in trends were estimated by taking the 5–
95% confidence interval from the distribution of 50-year
trends from each of the control runs. The mean trend for
each of the indices from the control runs was zero. Uncer-
tainty for the observed trend was taken from the broadest
distribution from the controls (CSIRO Mk2). For the GS
forced simulations, the trends in Tmean and Tmin from the
models compare well with the observations. For Tmax, we
find that the response of global maximum temperature in
four of the five models used here is too large compared to
that observed. This result is similar to Stone and Weaver
[2002], who compare observed and modelled DTR changes
using CGCM1 and CGCM2. While observed Tmax changes
are �0.4�C less than Tmin changes for this period, the
models show similar magnitude trends in both Tmax and
Tmin. This difference is reflected in the magnitude of the

simulated 50-year DTR trends, which are much smaller than
observed. While the differences between the observed and
simulated Tmax response are not statistically significant in
analysis presented here, the effect on the DTR response
highlights the sensitivity of this index to small relative
changes in maximum and minimum temperatures. While
this is useful in amplifying the signal of Tmax and Tmin in the
observations, DTR will be similarly sensitive to model error
in the simulation of its controlling parameters and to the
way forcing changes are applied in the models. In addition,
similar changes to DTR can be caused by quite different
mechanisms. For PCM, a low sensitivity model, DTR trends
are roughly equivalent to those of the other GCMs but due
to lower than observed Tmin rather than larger maximum
temperature trends.
[15] Studies that have sought to determine the controlling

factors of DTR [Stenchikov and Robock, 1995; Dai et al.,
1999, 2001; Stone and Weaver, 2002, 2003] have shown
that DTR responds strongly to forcing from clouds and soil
moisture. Dai et al. [1999] show a strong correlation
between annual DTR and annual cloud cover, while
changes in soil moisture are important to DTR through
the effect of evaporative cooling [Dai et al., 1999; Stone
and Weaver, 2003]. As a preliminary step in understanding
the causes of the differences between GCM and observed
DTR, we investigate the relationship between Tmax and
cloud cover. We calculate correlations of interannual varia-
tions in area averaged total cloud (percentage cloud) with
Tmax from detrended observations and from unforced sim-
ulations from CSIRO Mk2 and HadCM2, using the same
sampling method previously outlined. Table 2 shows a
strong negative correlation between unforced cloud cover
and Tmax in the models. This simulated relationship is
consistent with Dai et al. [1999], who calculated seasonal
cross correlation coefficients of observed Tmax with various
components of the surface heat balance over the United
States, China and Australia. Conversely, the relationship
between observed cloud and Tmax shows zero correlation in
the decadal, detrended time series used here. However this

Table 1. Decadal Variability and Correlation With Tmean From Observations 1901–2000 (Detrended) and GCM Control Integrations

Model

Decadal Standard Deviation Correlation With Tmean

Tmean Tmin Tmax DTR Tmin Tmax DTR

Observed 0.07 0.07 0.07 0.04 0.97 0.96 �0.24
CSIRO Mk2 0.09 ± 0.02 0.10 ± 0.03 0.10 ± 0.02 0.04 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.03 ± 0.24
HadCM2 0.13 ± 0.02 0.14 ± 0.01 0.14 ± 0.01 0.04 ± 0.02 0.97 ± 0.05 0.98 ± 0.04 0.20 ± 0.28
ECHAM4 0.12 ± 0.03 0.12 ± 0.03 0.11 ± 0.03 0.03 ± 0.01 0.99 ± 0.01 0.94 ± 0.05 �0.53 ± 0.18
PCM 0.09 ± 0.01 0.09 ± 0.01 0.09 ± 0.01 0.04 ± 0.01 0.98 ± 0.01 0.97 ± 0.01 0.02 ± 0.22
CGCM2 0.13 ± 0.01 0.13 ± 0.01 0.14 ± 0.01 0.04 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.22 ± 0.11

Table 2. Correlation (R) of Unforced and Observed (Detrended)

Decadal Changes in Total Cloud (%) With Tmax (Column 1) and

Observed and Ensemble Mean GS Forced 50-Year Linear Trends

(1951–2000) in Total Cloud (%) (Column 2)a

Model R Unforced GS Trends

Observed �0.02 0.3814
CSIRO MK2 �0.58 �0.007
HadCM2 �0.55 �0.004

aNote HadCM2 has a relatively short control period of 100 years for total
cloud.

Figure 2. 50-year linear trends in Tmean, Tmin, Tmax and
DTR from 1951–2000 from the decadal observations and
GS simulations.
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result was found to be extremely sensitive to the sampling
period and detrending method which casts some doubt on
the usefulness of this statistic.
[16] Also shown in Table 2 are 50 year linear trends in

cloud cover for 1951–2000. Both models show no signif-
icant changes in cloudiness over land under GS forcing
while observed cloud cover has increased over this period.
It therefore seems likely that the absence of trends in
cloudiness in the model simulations, and the associated
damping of Tmax, contributes to the much smaller trends in
DTR than observed. Surprisingly, the correlation between
cloud cover and minimum temperatures is weak in the
control simulations on interannual and decadal timescales.
This result is supported by Dai et al. [1999] and Stone and
Weaver [2003] who find the net effect of cloud on nighttime
minima to be small. Nevertheless changes in cloud are
likely to have some effect on Tmin, particularly on seasonal
and regional scales.

4. Summary

[17] Diurnal temperature range appears to be a suitable
index of climate variability and change, in the context of
similar simple global indices outlined by Braganza et al.
[2003]. While changes in maximum and minimum temper-
ature are strongly associated with changes in global mean
temperature, DTR provides additional information for the
attribution of recent observed climate change. Natural
variability of Tmin, Tmax and DTR is reasonably well
simulated in long, unforced GCM simulations. Observed
DTR over land shows a large negative trend of �0.4�C over
the last 50 years that is very unlikely to have occurred due
to internal variability. This trend is due to larger increases in
minimum temperatures (�0.9�C) than maximum temper-
atures (�0.6�C) over the same period. Analysis of trends in
DTR over the last century from five coupled climate models
shows that simulated trends in DTR due to anthropogenic
forcing are much smaller than observed. This difference is
attributable to larger than observed changes in maximum
temperatures in four of the five models analysed here, a
result consistent with previous modelling studies.
[18] The overestimation of Tmax warming in anthropo-

genic forced simulations may be due to poor representation
of cloud changes over land. Observed increases in cloud
cover since 1951 are not simulated by models forced with
increasing greenhouse gases. This is supported by Stone and
Weaver [2002, 2003] and Dai et al. [1999] who have
described the association between the observed reducing
trend in DTR and increases in cloudiness. Changes to water
vapour, soil moisture and precipitation, not considered here,
are also likely to have lesser but important impacts on
simulated trends in Tmax and Tmin.
[19] Since DTR is highly sensitive to small changes in

maximum and minimum temperatures it is important that
we fully understand the causes of model inconsistencies
with observations. This study does not consider simulated
changes in DTR due to changes in solar irradiance or
volcanic aerosols or forcing due to other aerosols such as
black carbon, the indirect radiative effect of aerosols or land

use changes, all of which may be expected to impact on
DTR.
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