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ABSTRACT

The time–frequency spectral structure of El Niño–Southern Oscillation (ENSO) time series holds much in-
formation about the physical dynamics of the ENSO system. The authors have analyzed changes of the spectrum
with time of three ENSO indices: the conventional Southern Oscillation index (SOI), Niño3 sea surface tem-
peratures, and a tropical Pacific rain index, over the period 1871–1995. Three methods of time–frequency
analysis—windowed Fourier transform, wavelet analysis, and windowed Prony’s method—were used, and the
results are in good agreement. The time–frequency spectra of all the series show strong multidecadal variations
over the past century. In particular, there was reduced activity of ENSO in the 2–3-yr periodicity range during
the period 1920–60, compared with both the earlier and later periods. The dominant frequencies in the spectra
do not appear to be constrained to certain frequency bands, and there is no evidence that the ENSO system has
fixed modes of oscillation.

The qualitative behavior of the real SOI time series has been compared with that of time series simulated by
an autoregressive stochastic process of order 3 and time series created by phase-randomizing the spectral
components of the SOI. The decadal variability of the amplitude and time–frequency spectra was found to be
very similar between the observed and simulated SOIs. This suggests that the decadal variability of ENSO can
be well simulated by a stochastic model and that stochastic forcing may be an important component of ENSO
dynamics.

1. Introduction

Understanding the nature of the variability of our cli-
mate is emerging as the primary focus of many cli-
matological studies. The El Niño–Southern Oscillation
(ENSO) is a particularly important component of cli-
mate variability, second in magnitude only to the annual
cycle. It refers to coherent fluctuations of sea surface
temperatures, pressure anomalies, and zonal winds in
the basins of the tropical Indian and Pacific Oceans. We
have used time–frequency analysis methods to inves-
tigate and describe interannual and interdecadal vari-
ability of ENSO series over the past 120 yr. Several
indicators of ENSO have been used to confirm the re-
liability of the different series. This approach allows us
to infer some dynamical characteristics of the ENSO
system.

The power spectra of long ENSO-related time series
(.40 yr) have a broad spectral peak corresponding to
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periods of about 2–8 yr (Rasmusson and Carpenter
1982). In many cases, the broad peak of the spectra
appears to be subdivided into a 2–3-yr quasi-biennial
(QB) peak and a 3–8-yr low-frequency (LF) peak (Bar-
nett 1991). Barnett (1991) and Allan et al. (1995) found
that the variability associated with each band has
changed over the past century. Some recent theoretical
and analytical work views these bands as fundamental
modes of fluctuation of the ENSO system, whose in-
terference and interaction with each other and with the
annual cycle produces the variability in ENSO fluctu-
ations (Barnett 1991; Allan et al. 1995; Brassington
1997). The LF mode appears to be energetically more
important.

Recently, Wang and Wang (1996) used wavelet and
waveform analysis to closely investigate how the spec-
trum of ENSO series has changed over the past century.
They found that there have been large changes in the
dominant frequencies on the scale of decades, although
these frequencies appeared to be confined to constant
values for periods of up to 20 yr. Wang and Wang con-
cluded that these results support the view that ENSO
variability is produced by the interaction of several fun-
damental modes.
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In this paper we examine the changes in the spectrum
over time of three ENSO series: the Southern Oscillation
index (SOI), Niño3 SST anomalies, and a tropical Pa-
cific rainfall index (section 2). We use three time–fre-
quency analysis methods—windowed Fourier trans-
forms, wavelet analysis, and the windowed Prony meth-
od—to calculate the spectra (section 3). The spectral
patterns produced are in good agreement between the
different time–frequency analysis methods and between
the different data series. They support the existence of
a single dominant mode with a continuously changing
frequency in the 2–10-yr range, rather than the occur-
rence of multiple modes with constant frequencies. Un-
like Wang and Wang (1996), we find good agreement
between the time–frequency variability of the SST index
and the SOI before 1950.

To assess the significance (both physical and statis-
tical) of the variability of the ENSO spectra, two ap-
proaches have been used to simulate ENSO time series.
In the first, the SOI time series was simulated by an
autoregressive stochastic process of order 3. In the sec-
ond approach, the phase of the individual spectral com-
ponents of the observed SOI was randomized and re-
combined to form a new time series. This phase-ran-
domized series has an identical power spectrum to the
observed SOI but has different phase relationships be-
tween the spectral components. The decadal variability
of the amplitude and time–frequency spectra of the ob-
served SOI was compared with those of the simulated
time series. This allows us to infer the significance of
the observed decadal variations of the SOI spectrum.

2. Data

The ENSO phenomenon has three main aspects: an
atmospheric component, an oceanic component, and te-
leconnection patterns. To recognize features of ENSO
that are coherent, independent data series that represent
each of these aspects have been used (Trenberth and
Shea 1987). It is highly desirable to use the longest
available data series for investigating interannual and
decadal fluctuations, but data from the pre-1950 period
are often missing or sparse (Wright 1989; Wang and
Wang 1996). While this is the reason why many studies
of ENSO concentrate on patterns from the 1950s on-
ward, this recent period may not be representative of
long-term ENSO dynamics (Trenberth and Shea 1987).
The datasets used here have been filled and corrected
carefully. The reliability of the pre-1950 data will be
tested by comparing features of the series during that
period.

The Southern Oscillation is the atmospheric com-
ponent of ENSO. It is usually measured by the SOI,
which is defined as the normalized monthly mean Tahiti
minus Darwin sea level pressure anomalies. This form
of the SOI is the most effective in capturing the out-
of-phase relationship between pressure anomalies in the
eastern and western Pacific (Trenberth 1984) and is the

most commonly used single-valued index of the
Southern Oscillation. There is some concern over the
quality of the early Tahiti data, which affects the quality
of the SOI. Trenberth and Shea (1987) and Wang and
Wang (1996) avoided the problem by only using the
Darwin pressure anomalies. Since this may reduce the
amount of ENSO-related variability being analyzed, we
chose to use the SOI series of Allan (1993) in which
the early part of the Tahiti record was corrected using
data from neighboring stations. This SOI series extends
from January 1876 to April 1995.

The oceanic component of ENSO can be measured
by sea surface temperature (SST) anomalies in the equa-
torial Pacific Ocean. The data used here are anomalies
of the gridded GISST 2.3a monthly SST set developed
at the U.K. Meteorological Office (Rayner et al 1997).
Average SST anomalies in the Niño3 region (58N–58S,
1508–908W), where the ENSO signal is particularly high
(Barnston 1995), are used (SST series hereafter). This
series extends from January 1871 to December 1994.
The pre-1982 SST data has been reconstructed using
spatial EOFs. These EOFs were calculated using 45 yr
of modern SST data and fitted in a least squares sense
to the data available in each month from 1871 to 1981.
No other climatic variables were used as input to this
analysis. This regression technique is expected to im-
prove the quality of SST data significantly, and certainly
provides more interannual variance in the Niño3 region
before 1950.

Another commonly used ENSO measure is the index
of central equatorial Pacific rainfall (RAIN) constructed
by Wright (1984, 1989). The record spans the period from
October 1893 to August 1983. This index measures the
tropical Pacific rainfall variations associated with the east-
ward movement of the region of tropical convection to
the date line during a warm ENSO episode. A small num-
ber of missing data had been replaced by regression with
sea surface temperature data (Wright 1989).

To increase the signal-to-noise ratio in the data, we used
3-month seasonal averages (December–February, March–
May, etc.) of the original monthly data series. Such av-
erages increase the signal-to-noise ratio of the data without
affecting the interannual fluctuations in which we are in-
terested (Trenberth 1984; Chu and Katz 1985). It should
also be noted that since each of the three series represents
anomalies from long-term mean monthly values, they con-
tain almost no mean annual cycle.

The data series we have used are shown in Fig. 1.
They are highly correlated for the periods of overlap
between the series (see Table 1). Elliott and Angell
(1988) and Trenberth and Shea (1987) have found that
the correlation between the series has changed with
time. Figure 2a shows a ‘‘moving correlation’’ between
the SOI series and the SST and RAIN series, for 21-yr
(84-season) overlapping segments of the data. It shows
the same pattern as Elliott and Angell (1988) have
found, namely that there is a drop in the correlation
between each pair of series in the period 1920–50. The
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FIG. 1. Time series of seasonal ENSO indices used in this study: Southern Oscillation index (SOI), Niño3 sea
surface temperature (SST), and equatorial Pacific rainfall index (RAIN). Before plotting, the mean of each series
was removed and the resulting anomalies were divided by the standard deviation of the series.

TABLE 1. Correlation between the data series used in this study,
for their periods of overlap. All values of the correlation coefficient
are significant at 5% level.

SOI SST

SST
RAIN

20.68
20.66

—
0.80

correlation is higher both before and after this period.
A similar drop in the strength of the relationship occurs
between other ENSO variables and teleconnections (Al-
lan et al. 1995). It therefore appears that the weak re-
lationship during 1920–50 represents a system-wide
change, rather than due to weakening of some telecon-
nection mechanisms or poor data quality during this
period (Elliott and Angell 1988).

The drop in the correlation between the indices co-
incides with a drop in the variance of each series (Elliott
and Angell 1988; Trenberth and Shea 1987). Figure 2b
shows the ‘‘moving variance’’ of 21-yr segments of the
seasonal series. The plots show that the pre-1920 and
post-1950 periods have a similar and large variance
compared to the 1920–1950 period. This pattern has

also been found in several other ENSO series (Gu and
Philander 1995).

The similarity of the changes in correlations and vari-
ance between the series prior to 1950 gives greater con-
fidence in using these data in the early period, when
their quality is more questionable. The similarity is
greatest between the SOI and SST series, but is not as
strong for the RAIN series.

3. Methods of time–frequency analysis

Time–frequency analysis, the spectral analysis of
nonstationary signals whose frequency spectrum
changes with time, is not trivial. Difficulties are
caused by the properties of the time series becoming
local rather than global in time. A truly local spectrum
of a discrete nonstationary series exists only for the
duration of one data point, but the estimation of a
spectrum with one data point is virtually impossible.
The usual method of dealing with this problem is to
approximate the local behavior of the series at a point
by the behavior of a short interval, or window, of data
centered on this point. The window length is chosen
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FIG. 2. Moving window analysis of overlapping 21-yr windows of
ENSO series. The series were divided by their standard deviation for
the period 1950–89 to emphasize differences in the early period. (a)
Correlation (absolute value) of the SST and RAIN series with the
SOI series. (b) Variance of the data segments. The value on the x
axis indicates the year at the center of each segment.

as a compromise between a better approximation of
the local behavior (smaller windows) and better fre-
quency resolution (larger windows with more data
points). Consequently, there are no foolproof methods
of time–frequency analysis.

We chose to analyze the ENSO data using three meth-
ods: windowed Fourier transform, wavelet transforms,
and windowed Prony’s method. Each method has its
own strengths and weaknesses. The comparison of their
results can provide a more complete picture of ENSO’s
time–frequency behavior.

Before analysis, each series of ENSO data had its
long-term mean removed and was normalized by its
standard deviation. This makes the total variance of each
series equal to one and allows the spectra of the series
to be compared directly.

a. Windowed Fourier transforms

The Fourier transform is a robust, well-understood,
and often-used technique for spectral estimation. For
time–frequency analysis the data were divided into
equal-length (overlapping) segments (windows). The
Fourier transform of each window was computed as an
approximation to the spectrum of the point at the center
of the window. This analysis technique is known as
windowed Fourier transform, short-time Fourier trans-
form, or the Gabor transform (Chan 1995). From here
on it will be referred to as the Fourier method.

The Fourier method was carried out by performing a
discrete Fourier transform on 21-yr (84-season) win-
dows of the data. To prepare each window for spectral
analysis, the mean of the window was subtracted, and
the initial and final 5% of the data in the window was
weighted with a cosine bell. The distance between the
centers of neighbouring windows was 1 yr.

The problem with the Fourier transform stems from
the fact that it only calculates the power of frequencies
f k, which belong to the discrete harmonic set

k N
f [ , k 5 0, . . . , , (1)k NDt 2

where Dt is the sampling interval and N is the number
of data points used in the analysis. This means that the
resolution (or the number of power estimates) of the
spectrum from a Fourier transform depends on the num-
ber of data points in the series. So while the Fourier
transform works very well when performed on long data
series, it may be of limited use for short data series,
such as short data windows from a Fourier method anal-
ysis. The problem of the resolution is particularly ob-
vious in the low-frequency part of the spectrum. Figure
3a illustrates how this problem affects the interannual
part of a Fourier method spectrum (Fourier spectrum
hereafter) of 21-yr windows of seasonal data. As can
be seen in this figure, there are about five power esti-
mates for periods in the range of 2–4 yr, and about the
same number of estimations for periods in the range 4–

21 yr. Clearly, the frequency resolution of ENSO-related
periods is poor.

b. Wavelet analysis

Wavelet analysis is becoming increasingly common
in meteorological studies. It is a method designed to
optimize both time and frequency resolution by choos-
ing the best window width for a particular frequency
band. For this reason it is considered to be superior to
the Fourier method and it is finding applications in many
fields. The reader is referred to reviews by Farge (1992),
Meyers et al. (1993), Lau and Weng (1995), and Torr-
ence and Compo (1998) for detailed information on
wavelets and their relationship to the Fourier method.

Briefly, the wavelet transform is defined by the con-
volution, or inner product, of the data signal x(t) and a
set of functions ca,b(t) called wavelets. Wavelets are
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FIG. 3. Comparison of time–frequency analysis methods. (a)
Location of power estimates (represented by circles) in the time–
frequency plane of the Fourier method for 21-yr segments. (b)
Window length used by the windowed Fourier transform and by
the continuous wavelet transform with a Morlet wavelet for a
given frequency to be analyzed. For the wavelet analysis, the
length represents 95% reduction in the amplitude from the max-
imum amplitude. (c) Same as (a) but for the windowed Prony’s
analysis of the SOI. Each circle represents the location of a power
estimate. Only the interannual part of the spectrum is shown, to
emphasize ENSO-related variability.

derived from a ‘‘mother wavelet,’’ c (t), by a translation
by length b and a dilation by scale a:

1 t 2 b
c (t) 5 c . (2)a,b 1/2 1 2a a

Wavelets have several special properties, one of which
is compact support both in the time and the frequency
spaces. A compactly supported function is effectively
nonzero for a finite (and small) part of its domain. Hence
wavelets can either be viewed as special windows in
the time domain, or bandpass filters in the frequency
domain (Chan 1995). The scale parameter a controls the
width of the windows and the location of the bandpass
filter and, hence, connects the window size to the res-
olution of particular frequencies. The parameter b con-
trols the location of the window in the time domain.

The wavelet transform is defined by

1 t 2 b
W(a, b) 5 c x(t) dt, (3)E1/2 1 2a a

where W(a, b) is the wavelet coefficient at scale a and
translation b. In the ‘‘continuous’’ wavelet transform (in
contrast with the discrete wavelet transfrom) a can take

any positive value; its range of values is chosen ac-
cording to the range of frequencies of interest in the
data. The result is a clear graphical representation of
how the spectrum changes with time (Farge 1992). Prob-
lems with this approach will be discussed in section 4.
The values of b are limited to integers because of the
discrete nature of the data.

The continuous wavelet transform (wavelet transform
hereafter) can be efficiently calculated in Fourier space
(Meyers 1993; Weng and Lau 1994) by using the fol-
lowing relationship:

1/2a
2ivb ˆW(a, b) 5 e c*(av)x̂(v) dv. (4)E2p

The hat above a variable indicates the Fourier transform
of that variable, that is,

1
ivtĉ(v) 5 c(t)e dt, (5)E2p

and the asterisk denotes the complex conjugate. Given
a value of a, the product is calculated2ivb ˆexp c*(av)x̂(v)
for each v, and the result is inverse transformed using
(4) to give W(a, b) for each b 5 1, . . . , N.

To minimize the distortion of the spectra due to end
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effects, the series were padded on both sides with tails
tapering to zero prior to being analyzed. The regions
corresponding to the tails were discarded after the wave-
let transform had been completed (Meyers et al. 1993).

A common way of displaying the results of the trans-
form is to plot the amplitude of the wavelet coefficients
|W(a, b)| (Chan 1995; Farge 1992; Meyers et al. 1993).
This method, however, is not directly comparable to the
Fourier spectrum. For direct comparison of the spectra,
we used instead the amplitude squared spectrum
|W(a, b)|2 (wavelet spectrum hereafter).

A mother wavelet that is commonly used in mete-
orology is the Morlet wavelet (Meyers et al. 1993; Gu
and Philander 1995; Lau and Weng 1995; Wang and
Wang 1996), which is defined by a complex sinusoid
modulated by a Gaussian:

2iv t 2(t /2)0c(t) 5 e e . (6)

In the Fourier domain the Morlet wavelet has the form

1
[(v2v )/2]ˆ 0c(v) 5 e 2 , (7)

1/22p

with the constant v0 5 6 for the Morlet wavelet to
ensure invertability (Farge 1992). Since the wavelet
transform computes the similarity between the wavelets
and the signal, the choice of the mother wavelet is im-
portant. Gu and Philander (1995) suggest that the ENSO
signals may be represented by sinusoids, supporting the
choice of the Morlet wavelet.

Figure 3b compares the length of the windows for
the analysis of different frequencies between the Fourier
method and the wavelet transform with the Morlet wave-
let. It can clearly be seen that in the wavelet analysis
the length of the window changes considerably between
the high- and low-frequency parts of the spectrum, and
uses only a similarly sized window to the Fourier meth-
od used here for periodicities in the 4–7-yr range.

c. Windowed Prony’s method

Another way of overcoming the problem of poor fre-
quency resolution from which the Fourier method suf-
fers is to use a spectral analysis method that is not
restricted to calculating the power of a particular set of
frequencies. The Prony method of spectral analysis (e.g.,
Marple 1987; Barone et al. 1989), for example, assumes
that the data can be modeled as the linear sum of ex-
ponentially decaying sinusoids:

q

x̂ 5 A exp(a kDt) cos(2p f Dt 1 f ),Ok n n n n
n51

k 5 0, . . . , N 2 1, (8)

where x̂k is the model approximation of order q to the
data series xk, (k 5 0, . . . , N 2 1). The parameters An,
an, f n, and f n are the amplitudes, decay factors, fre-
quencies, and phases of the model, respectively. Unlike

Fourier transforms, the choices of the frequencies in the
Prony method are not restricted a priori.

Briefly, the Prony method calculates the 4q model
parameters, which minimize the squared error

N21

2|x 2 x̂ | , (9)O k k
k50

given a model order q. The solution of this nonlinear
least squares problem reduces to fitting an autoregres-
sive (AR) model of order 2q to the data, and the au-
toregressive coefficients are then used to calculate the
frequencies and decay factors. The amplitudes and
phases are then found through the solution of a linear
least squares problem.

This method, applied to 21-yr segments of the data
as was done with the Fourier method, from here on shall
be referred to as the Prony method. We have fitted each
window of the data with the maximum model order q
possible, which is the maximum q such that 4q # N
(i.e., q 5 21 for seasonal data). Figure 3c shows the
same part of the time–frequency plane as Fig. 3a, but
with the results of a Prony frequency analysis. The cir-
cles directly above each year on the x axis are the q
frequency components obtained from a 21-yr segment
centered on that year. This demonstrates how the fre-
quencies resolved are not restricted to a fixed discrete
set of frequencies, as in the Fourier method.

If the true order for the data is less than the order q
chosen, then some of the frequency components re-
solved by the method are the result of overfitting the
data and are of little interest. To assess the importance
of each frequency component f n to the data, the damped
sinusoid component with coefficients {An, an, f n, f n}
was reconstructed using the equation

x̂k(n) 5 An exp(ankDt) cos(2pf nDt 1 f n),

k 5 0, . . . , N 2 1. (10)

Then, x̂k(n) was cross correlated with the original data
xk and the correlation coefficient squared (fraction of2rn

variance explained by the nth frequency component)
was used as a measure of the strength of this component.
A frequency component that features strongly in the data
will have a higher value of than one that does not.2rn

To facilitate plotting the Prony spectrum as a contour
plot, the discrete deltalike pulses of the Prony spectrum
were converted to narrow triangular functions in the
frequency plane with a peak at height 3 (variance2rn

of window) and base at zero.

4. Results

a. Comparison of time–frequency methods

The Fourier, wavelet, and Prony time–frequency
spectra of the SOI are shown in Fig. 4. Although they
appear qualitatively different, a closer inspection shows
that the spectra have a similar power distribution, par-
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FIG. 4. Time–frequency spectrum of the SOI using (a) the Fourier
method, (b) continuous wavelet analysis, and (c) windowed Prony’s
method. In (a) and (c) the value on the x axis represents the year at
the center of a 21-yr window. For each spectrum, contour lines rep-
resent 20%, 40%, and 60% of the maximum power of that spectrum.
The black shading therefore represents regions where the power is
greater than 60% of the maximum.

FIG. 5. Time-integrated and standardized spectra of the wavelet
(solid line) spectrum and the Fourier spectrum (broken line) of the
SOI.

ticularly in the location of strong power. The variability
of the SOI is contained in a 2–10-yr periodicity band
and there are large decadal changes in the power dis-
tribution within this band. There is little evidence for
any fixed frequency or mode that is persistent thoughout
the period of analysis. There are, however, some im-
portant differences between the methods that need to be
discussed before the behavior of the SOI and the other
series can be described more carefully.

The Fourier method has an inherent tendency to over-
estimate power at high frequencies at the expense of
low frequencies, while the wavelet transform improves
this bias (Lau and Weng 1995). This is illustrated in
Fig. 5 by comparing the time-averaged Fourier and
wavelet spectra, created from the time–frequency spec-
tra. Apart from differences in the frequency resolution
(which is why the peaks of the Fourier spectrum and
the wavelet spectrum are slightly misaligned), the spec-
tra are very similar. Two notable differences exist: the
QB peak of the Fourier spectrum at approximately 0.43
cpy is barely noticeable in the wavelet spectrum, and
the peak in the wavelet spectrum at approximately 0.08
cpy is barely noticable in the Fourier spectrum. Since
the wavelet spectrum has almost no QB peak, it is pos-
sible that Fourier analysis in general may produce spu-
rious QB peaks in ENSO series, particularly if short
series are analyzed.

The fixed window length of the Fourier and Prony
methods can also produce misleading results. The Fou-
rier and the Prony spectra in Figs. 4a and 4c, respec-
tively, have what may be called a QB band, represented
by a persistent peak with a period of about 2.4 yr. This
persistence, however, is probably an artifact of poor time
localization because in the wavelet spectrum these 2-yr
cycles occur as pulses (e.g., at approximately 1925,
1945, 1964, 1972, and 1982). The 21-yr windows used
with the Fourier and Prony methods are much larger
than the period of the oscillation so a 2-yr pulse remains
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FIG. 6. Same as Fig. 4 but for the SST series.

within the analyzing window for a long time. The wave-
let transform uses a window approximately 10 yr long,
as is shown in Fig. 3b, and hence has superior time
localization. A plausible explanation for the pulses with
a period of approximately 2 yr is the tendency for an
El Niño episode to be preceded or followed by a La
Niña episode. Each of these episodes lasts for about 1
yr, creating overall a cycle with a period of about 2 yr
(Barnett 1991).

The wavelet and Prony spectra have improved fre-
quency resolution at low frequencies compared to the
Fourier spectrum. For example, the Fourier spectrum
shows an apparently constant 7-yr periodicity from 1905
to 1920, because it does not resolve any periods between
7 and 10 yr. Both the wavelet and the Prony methods
indicate that over this period, the period of oscillation
has gradually changed from about 10 yr to about 7 yr.

In the wavelet spectrum in Fig. 4b the spectral peaks
at high frequencies tend to be ‘‘stretched’’ in the fre-
quency plane. This is a consequence of using continuous
wavelet analysis. If the covariance of a signal with a
sinusoid of a particular frequency is high, then the co-
variance of the signal with a sinusoid with a neighboring
frequency will also be high. Another way of looking at
this problem is that the wavelet spectrum is ‘‘overcom-
plete.’’ Because we can analyze the data with as many
values of the scale parameter a as we choose, the wave-
let spectrum contains many more data values (but no
more information) than the original data. The extra data
values create broader peaks and smeared power, and
reduces the certainty in the exact position of a particular
spectral peak (Farge 1992). We overcame this problem
by comparing the wavelet specrum to those produced
by the Fourier and Prony methods, both of which pro-
duce only as much spectral information as that contained
in the data.

Wang and Wang (1996) analyzed Darwin sea level
pressure anomalies using continuous wavelet analysis.
Their resulting spectrum is very similar to the spectrum
of the SOI in Fig. 4b (Fig. 8a in Wang and Wang 1996,
1595). To overcome the problems inherent in the wave-
let analysis, they also used an ‘‘improved’’ method
called waveform analysis. The waveform spectrum was
also clearly nonstationary. However, it produced fea-
tures that appear to be constant frequency modes that
lasted for a long period of time, like a strong 3-yr os-
cillation during 1890–1910 (Fig. 8b in Wang and Wang
1996, 1595). Evidence from the spectra of the SOI in
this study does not support these conclusions. The
strong oscillations are usually short lived and change
their frequency continuously. Within the limitations of
each of the time–frequency methods used here, they all
agree on this point. The problems with the waveform
method used by Wang and Wang (1996) may be that it
has low-frequency resolution (even lower than the Fou-
rier method here) and that, as Wang and Wang (1996)
noted, it has poor amplitude estimation capabilities.

b. Comparison of spectral patterns of ENSO series

The time–frequency spectra of the SST and the RAIN
series are given in Figs. 6 and 7, respectively. The qual-
itative differences between the analysis methods, noted
above for the SOI, are also apparent for the SST and
RAIN series and will not be elaborated on further.

By inspection, the spectra of the SOI, SST, and RAIN
series have very similar patterns. An objective measure
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FIG. 7. Same as Fig. 4 but for the RAIN series.

TABLE 3. Same as for Table 2 but for the pre-1950 (underlined)
and post-1950 periods of overlap.

SOI SST

SST
RAIN

0.85/0.88
0.89/0.90

—
0.90/0.89

TABLE 2. Pattern congruences between the wavelet amplitude
squared spectra of the SOI, SST, and RAIN series, for their whole
periods of overlap.

SOI SST

SST
RAIN

0.86
0.90

—
0.89

of the similarity between the spectra can be obtained by
calculating the pattern congruence [uncentered pattern
correlation, Harman (1976)] between pairs of spectra;
here we compare the wavelet spectra. For two time–
frequency spectra Xij and Yij for i 5 1, . . . , N, j 5 1,
. . . , M the pattern congruence is defined by

X YO ij ij
i,jC 5 . (11)

1/2

2 2X YO Oij ij1 2i,j i,j

A value of C close to one means that the spectral patterns
are very similar, while a value of C close to zero means
that the spectra are not similar.

The values of the congruence between the wavelet
spectra of the SOI, SST, and RAIN, for their entire
period of overlap, are given in Table 2. These values
are close to one and indicate that the data series have
similar spectral structures. As yet we cannot assess how
statistically significant these congruence values are. In
section 5 we will develop a test for significance using
stochastic models of the SOI.

It was mentioned in section 2 that the pre-1950 data
is often treated with suspicion because its quality may
be low. Table 3 compares the values of the congruence
for the pre-1950 and post-1950 periods of overlap be-
tween the data series. The results show that the spectra
of the series are about as similar in the pre-1950 period
as they are in the post-1950 period. As the data series
were mostly derived independently (see section 2), the
agreement between their spectral structures and tem-
poral structures means that the series capture the essence
of the same phenomenon—ENSO. The agreement in-
creases our confidence in the reliability of the data in
the pre-1950 period, and in the validity of the spectral
patterns that have been calculated.

The distribution of the spectral power of frequencies
in time is episodic, rather than continuous, as Figs. 4,
6, and 7 show. From the late 1800s to 1925, the dom-
inant frequencies occur in the 3–10-yr range. This is
not a single coherent mode, and it is not so clearly
separated from higher frequencies in the 2–3-yr range
as is often thought (e.g., Barnett 1991; Wang and Wang
1996). During the period 1930–60, the presence of high-
er frequencies is very weak, and the spectrum is dom-
inated by a low 4–7-yr periodicity. This period approx-
imately corresponds to the period of reduced variance
and correlation between ENSO series (section 2b; Allan
1993; Trenberth and Shea 1987; Cole et al. 1993). In
the 1970s the period of the fluctuations decreases again
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FIG. 8. Theoretical power spectrum of the AR(3) model of the SOI
(light line) together with the spectrum of the real SOI series for the
period 1935–83 (solid heavy line) and for the whole record 1876–
1995 (broken heavy line).

to 2–5 yr. These results, together with the observed
changes in the variance of ENSO, support the assertion
that the recent activity of ENSO is more similar to the
late 1800s to early 1900s than to the period in the middle
of the twentieth century (Allan 1993).

The SST series (GISST 2.3a) provides a marked im-
provement in quality over the frequently used SST data
from the Comprehensive Ocean Atmosphere Data Set
(COADS). Wang and Wang (1996) analyzed central and
eastern equatorial Pacific COADS SST data using wave-
let analysis. They found that the spectrum from this data
compared poorly with the Darwin sea level pressure
anomaly series in the pre-1950 period. As was men-
tioned earlier, the Darwin pressure series produced sim-
ilar spectral patterns to the series used in this investi-
gation and we infer that the COADS SST data is of
lower quality in the pre-1950 period.

5. Statistical testing with stochastic simulations of
the SOI

Power spectra and other properties of time series are
usually tested statistically against white noise or red
noise processes. A more rigorous test can be provided
by using a stochastic process, like an autoregressive-
moving average (ARMA) model, which imitates prop-
erties of the series (Chu and Katz 1985; Trenberth and
Hoar 1996; Torrence and Compo 1998). In this section,
an ARMA model will first be used to assess the sig-
nificance of the congruence test statistic. It will then be
used to assess the significance of a temporal and a spec-
tral ENSO ‘‘trademark’’ (variance and wavelet spec-
trum, respectively). In addition, we can generate sim-
ulated series by randomizing the phase of the individual
spectral components of the observed SOI and then re-
combining them to generate new series. While the new
series have the same power spectrum as the SOI, they
may have a different temporal structure, and hence a
different time–frequency spectrum, because of the ran-
dom phase relationships. This procedure has been used
by Yamada and Ohkitani (1991) and Ivanov et al. (1996)
to test for nonrandom phase structures in time series,
which may indicate a singularity in the time series.

Chu and Katz (1985) found that the best ARMA mod-
el to fit the seasonal series of the SOI from 1935 to
1983 is the AR(3) model specified by

Xt 5 0.6885Xt21 1 0.2460Xt22 2 0.3497Xt23 1 at.
(12)

Here, Xt is the value of the process at time t, and at

constitutes a white noise process with variance 52s a

1.505 [Eq. (12) will be referred to from here on simply
as the AR(3) model]. Trenberth and Hoar (1996) found
an ARMA(3,1) model for Darwin sea level pressure
anomalies for the period 1882–1981. While they have
used a longer record than Chu and Katz (1985) to cal-
culate their model, the Chu and Katz (1985) model was
used here because it uses the SOI directly, and is not

based on data that was prefiltered. In general, both mod-
els behave similarly.

The deterministic component of the AR(3) model,
obtained by removing the white noise forcing, is a de-
caying oscillation with a period of about 3 yr. Stochastic
forcing disturbs the decaying oscillator so that the spec-
tral peak is broadened and the process continues. The
AR model was designed to imitate the autocorrelation
structure of the SOI, and as a consequence it imitates
the spectrum of the SOI. The theoretical spectrum of
the AR(3) model, calculated using model coefficients
(Jenkins and Watts 1968), is plotted in Fig. 8. Also
plotted in Fig. 8 are spectra of the SOI that demonstrate
that the spectrum of the AR(3) model closely resembles
the general shape of the spectrum of the SOI for periods
up to about 10 yr. However, for periods longer than 10
yr the model has more power than the observed SOI.

A realization of the AR(3) model is plotted in Fig.
9a. It was created by seeding (12) with random initial
conditions and allowing the process to run for 1478
iterations. The first 1000 iterations were discarded to
eliminate the effects of the initial conditions (Trenberth
and Hoar 1996). The long-term mean of the resulting
478-season long time series (length of the real SOI se-
ries) was removed and the series was normalized by its
long-term standard deviation. This procedure cast the
series in a form directly comparable to the standardized
ENSO series described in section 3. Many realizations
can be created by repeating this process with different
random initial conditions. The wavelet spectrum of the
realization in Fig. 9a is plotted in Fig. 9b. The qualitative
resemblance between the spectral patterns produced by
the synthetic SOI and those produced by the real SOI
in Fig. 4b is striking. Torrence and Compo (1998) have
shown that an AR(1) red noise process can also simulate
much of the time–frequency variability shown in the
wavelet power spectrum. Since the AR(3) model is sto-
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FIG. 9. A realization of the AR(3) model with random initial con-
ditions: (a) time series plot and (b) wavelet amplitude squared spec-
trum of the realization, contoured as in Fig. 4.

TABLE 4. Maximum and minimum variance (in standard deviation
units) of 84-season-long data segments from a 478-season-long data
series. The values in the square brackets indicate the 95% confidence
intervals calculated from 1000 realizations of simulated SOI series.
All the series had been standardized as described in section 3 prior
to analysis.

Variance Min Max

Observed SOI
AR(3) model
Phase-randomized SOI

0.48
[0.42, 0.74]
[0.44, 0.76]

1.50
[1.23, 1.82]
[1.22, 1.76]

chastic, the peaks in its wavelet spectrum have no de-
terministic origin and are called pseudofrequencies (Chu
and Katz 1985). They occur when the model behaves
approximately periodically for a short time.

a. Pattern congruences

In section 3b the similarity between the wavelet spec-
tra of the SOI, SST, and RAIN series was measured
using pattern congruences. The congruence values in
Table 2 and Table 3 are high, but may not be significant
if the congruence between random series is also of com-
parable magnitude. To test the significance, we calcu-
lated the congruence between the wavelet spectra of 100
pairs of series randomly selected from a pool of 200
realizations of the AR(3) model. The length of the series
equaled the shortest length of overlap period between
the series tested, which is 359 seasons. Here, 95% of
the pairs had a congruence of less than 0.63. A similar
test was carried out with the phase-randomized series,
by calculating the congruence between the observed
SOI series and 100 phase-randomized series. In this test
95% of the the congruence values were less that 0.67.
Both these tests indicate that the time–frequency spectra

of the observed ENSO series are all significantly similar
to each other at the 5% level (see Table 2).

b. Range of variance

The variance of the SOI has changed considerably
during the past century (see Fig. 2b and section 2b).
These changes have been large enough to be attributed
to decadal variations in the background state of the at-
mospheric circulation (Elliott and Angell 1988; Allan
1993; Allan et al. 1995). In Table 4 the minimum and
maximum values of the variances of 21-yr windows of
the SOI are compared to the values produced by AR(3)
simulations and phase-randomized SOI series. One
thousand realizations of each of the simulated series
were used to produce two-tailed 95% confidence inter-
vals for the maximum and minimum variances. The val-
ues of the minimum and maximum variance of the ob-
served SOI fall within the confidence intervals of both
the AR(3) series and the phase-randomized series. This
means, first, that phase-randomization has not altered
the temporal structure of the SOI significantly. Second,
neither the maximum nor the minimum variance of the
real SOI is significantly different from what would be
expected if it was a realization of the AR(3) model. The
AR(3) model is therefore able to produce decadal
changes in variance that are similar to those produced
by the SOI.

c. Distribution of wavelet coefficients

The average spectrum of the SOI series has a broad
spectral peak (Fig. 8), but the distribution of power over
time is more sharply peaked in frequency and is not
constant [Figs. 4, 6, and 7; Wang and Wang (1996)].
The persistence and distribution of power in the AR(3)
spectrum (Figs. 8 and 9) are very reminiscent of those
observed for the SOI and the other ENSO series. To test
whether there are significant differences in structure be-
tween the real and synthetic SOI spectra, the probability
distribution of wavelet coefficient amplitudes was cal-
culated. This technique has been used before with dis-
crete wavelet analysis (Yamada and Ohkitani 1991; Iva-
nov et al. 1996) to distinguish between wavelet spectra
with different structures. For example, Yamada and
Ohkitani (1991) found that while the distribution of
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wavelet coeffiecients of a phase-randomized turbulence
time series was Gaussian, the turbulence series itself
had an exponential distribution. The distribution of the
wavelet coefficients of phase-randomized series is used
as a null hypothesis for a completely random, structu-
reless series.

The wavelet spectra were analyzed as follows. Each
wavelet spectrum was divided into four frequency
bands: 0.5–0.4, 0.4–0.3, 0.3–0.2, and 0.2–0.1 cpy (2–
2.5, 2.5–3.3, 3.3–5, and 5–10 yr, respectively). Four
histograms of wavelet coefficients |Wa,b| 2 were obtained
by sorting the coefficients within each band according
to their magnitude. This analysis was repeated 1000
times with 478-season-long AR(3) realizations and with
478-season-long phase-randomized series. The multiple
analyses were used to estimate the mean and standard
deviation of histogram heights for each frequency band
of the AR(3) model and the phase-randomized SOI. Fi-
nally, the histogram values were converted to proba-
bility densities.

Figure 10 shows the probability distribution of the
squared amplitude of wavelet coefficients |Wa,b| 2. The
distribution of the real SOI series is also plotted. The
distribution of the real series resembles the distribution
of the AR(3) model in the 2–2.5-, 2.5–3.3-, and 5–10-
yr bands (Figs. 10a, 10b, and 10d), and is well within
the confidence limits. In the 3.3–5-yr frequency band
(Fig. 10c) the distribution is more erratic and one ex-
cursion outside the confidence limits occurs. In the 10–
50-yr band (not shown) the model has appreciably more
large amplitude coefficients than the observed SOI be-
cause the model overestimates the power in this fre-
quency band.

The distributions of the AR(3) model in Fig. 10 are
decaying exponentials, which means that the distribu-
tion of |Wa,b| (unsquared coefficients) was Gaussian.
This type of distribution is expected from a regular sto-
chastic process like the AR(3) model (Yamada and Ohk-
itani 1991). It appears that, particularly in the high-
frequency range (2.0–3.3 yr) the SOI also behaves like
a stochastic system. The resemblence to a decaying ex-
ponential is not as strong for the 5–10-yr band, though
still significantly similar. Something different appears
to be occurring in the 3.3–5.0-yr band. Power estimates
with an amplitude of about 0.3 occur more than would
be expected had the SOI behaved exactly like the AR(3)
model. This could be caused, for example, by a dynam-
ical mechanism operating at this timescale.

The distribution of the observed SOI does not fit the
distribution of the phase-randomized SOI particularly
well. While the phase-randomized distributions are also
decaying exponentials, they have somewhat different
distributions to those of the AR(3) and the SOI. The
difference may be attributed to the autocorrelation struc-
ture of the AR(3) model and the observed SOI series.

In general, the simple AR(3) model described in (12)
is capable of producing both temporal and spectral de-
cadal variabilities that are very similar to those observed

in the real seasonal SOI data series over the past 120
yr. It does so without any change of background state
(like a change in the variance of forcing). This may
indicate that the SOI, and hence other ENSO indicators,
are driven by a similar stochastic mechanism.

6. Discussion and conclusions

A fundamental gap in our understanding of the ENSO
phenomenon is the uncertainty about which underlying
mechanisms, dynamical or stochastic, are primarily re-
sponsible for its observed variability (Chang et al.
1996). This knowledge is crucial for efficient and ac-
curate modeling and prediction of ENSO. The lack of
long-term high quality data has been one of the major
hindrances for progress in this area. In this study we
investigated how the temporal and spectral properties
of observed ENSO series have changed over the period
of observation. The seasonal time series used—SOI,
Niño3 SST, and central equatorial Pacific rainfall in-
dex—are the longest available quality ENSO series.

The temporal structure of the series varied consid-
erably over the past century. All the series had low
variance in the period 1920–50, compared with their
variance in the periods immediately beforehand and af-
terward. The period of low variance coincided with a
period of reduced correlation between the series. These
patterns in temporal structure have also been observed
for other ENSO series, suggesting that these changes
were a system-wide phenomenon (Elliott and Angell
1988).

The interannual variability of ENSO is contained in
a broad 2–10-yr periodicity band. By using time–fre-
quency analysis methods, which analyze changes in the
spectrum of the ENSO series, it was found that this
variability is not distributed evenly over time, but rather
that it is concentrated at different frequencies at different
times (Wang and Wang 1996; Cole et al. 1993). For
example, the period from 1930 to 1960 is dominated by
a 4–7-yr periodicity. In the earlier period (1880–1930)
and the later period (1960–90) shorter periods of 2–5
yr also occur, strengthening suggestions that the current
state of ENSO is similar in magnitude and frequency
to the conditions late last century and early this century
(Allan 1993). However, concentrated power does not
appear to be fixed to either certain frequencies or to
distinct frequency bands, as has been suggested previ-
ously (Barnett 1991; Wang and Wang 1996).

The temporal and spectral patterns described above
are significantly similar between all the series, partic-
ularly between the SOI and SST series. It supports the
assumption that these series represent aspects of the
same phenomenon, and increases the confidence in the
quality of the data series, even in the pre-1950 period.
These results open the way for more long-term studies
of ENSO and the use of the extended SOI and GISST
2.3a datasets for the calculation of ENSO-related cli-
matologies. We believe that these applications are par-
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FIG. 10. The probability density function of wavelet coefficients in the (a) 2.0–2.5-yr band, (b) 2.5–3.3-yr band, (c) 3.3–5.0-yr band, and
(d) 5.0–10.0-yr band. The shaded region corresponds to the mean 6 two standard deviations of 1000 realizations of the AR(3) model. The
fine solid lines are the mean 6 two standard deviations of 1000 realizations of the phase-randomized SOI. The heavy solid lines are the
distributions of the wavelet coefficients for the observed SOI from Fig. 4b.
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ticularly important because, as can be seen in the spectra
in Figs. 4, 6, and 7, the period from 1950 onward gives
an incomplete view of the full complexity of ENSO
(Trenberth and Shea 1987). It would be interesting to
see whether the results of studies that examined only
post-1950 ENSO data are reproducible when extended
sets are used.

The wavelet coefficients of the observed SOI have a
decaying exponential distribution over most of the fre-
quency range. This indicates that the SOI behaves like
a stochastic system (Yamada and Ohkitani 1991). It does
not appear to be an entirely random process, as its dis-
tribution is (at least in the parameter values of the dis-
tribution) significantly different from the distribution
created by phase-randomized SOI series. However, the
distribution of the observed SOI is within the confidence
bounds of a distribution created from simulated series
of an AR(3) model that was fitted to the SOI by Chu
and Katz (1985). It only deviated from this model in
the 3.3–5.0 periodicity band. The deviation in this pe-
riodicity band may reflect some underlying dynamics of
ENSO. The AR(3) series were also able to imitate the
decadal changes in the variance that have been observed
for the SOI. It appears, therefore, that the simple sto-
chastic AR(3) process can imitate the key features of
both the temporal and spectral interannual variability of
the SOI, without any change to the background forcing.

We emphasize that the above conclusion does not
mean that the ENSO system is an autoregressive process
of order 3. The model used was empirical and was not
based on knowledge of the physical system. The com-
parison between the model and ENSO provides evi-
dence that the similarity could result from ENSO being
mostly a well-behaved stochastic system. The analogy
might be extended further if we remember that the
AR(3) model [and the ARMA(3,1) model of Trenberth
and Hoar (1996)] is a linear oscillator driven by sto-
chastic forcing. The above results may indicate that the
ENSO system belongs to this class of systems. This was
suggested by Penland and Sardeshmukh (1995) who
found, using inverse modeling of SST data, that ENSO
was approximated well by a linear system forced by
white noise. However, this discussion must be assessed
in light of Rajagopalan et al. (1997) who cautioned that
the short length of ENSO data available may increase
the sensitivity of the results to how the analysis was
carried out.

Support for the stochastic origin of interannual ENSO
variability has been growing. Several recent studies
(Kleeman and Moore 1997; Chang et al. 1996; Flügel
and Chang 1996; Jin et al. 1996) have found that sto-
chastic processes are the major source of ENSO vari-
ability. Further evidence is provided by the fact that the
forecasting skill of dynamical models based on our
physical knowledge of the ENSO system is no better
than that of empirical models derived from data series
(Barnston 1995). This suggests that our understanding
of the physics of the system is far from perfect, or that

the predictability of the models may be inherently lim-
ited by stochastic forcing (Kleeman and Moore 1997;
Flügel and Chang 1996). Here we presented evidence
that the variability of observed ENSO data is not in-
consistent with a stochastic origin.
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Chang, P., L. Ji, H. Li, and M. Flügel, 1996: Chaotic dynamics versus

stochastic processes in El Niño–Southern Oscillation in coupled
ocean–atmosphere models. Physica D, 98, 301–320.

Chu, P.-S., and R. W. Katz, 1985: Modeling and forecasting the
Southern Oscillation: A time–domain approach. Mon. Wea. Rev.,
113, 1876–1888.

Cole, J. E., R. G. Fairbanks, and G. T. Shen, 1993: Recent variability
in the Southern Oscillation: Isotopic results from Tarawa Atoll
coral. Science, 260, 1790–1793.

Elliott, W. P., and J. K. Angell, 1988: Evidence for changes in
Southern Oscillation relationships during the last 100 years. J.
Climate, 1, 729–737.

Farge, M., 1992: Wavelet transforms and their applications to tur-
bulence. Annu. Rev. Fluid Mech., 24, 395–457.
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