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Abstract The analysis of katabatic flows is often complicated by heterogeneity in surface
characteristics. This study focuses on an idealized type of katabatic flow driven by a simple
form of inhomogeneous surface forcing: a buoyancy or buoyancy flux that varies down the
slope as a top-hat profile (cold strip). We consider the two-dimensional Boussinesq system of
governing flow equations with the slope angle, Brunt–Väisälä frequency, and coefficients of
eddy viscosity and diffusivity treated as constants. The steady-state problem is solved analyt-
ically in a linearized boundary-layer framework. Key flow structures are a primary katabatic
jet (essentially the classical one-dimensional Prandtl jet), a rotor-like feature straddling the
upslope end of the strip, and two nearly horizontal jets: an inward jet of environmental air
feeding into the primary jet on the upslope end of the strip and an outward jet resulting
from the intrusion of the primary katabatic jet into the environment on the downslope end
of the strip. Next, the corresponding nonlinear initial value problem is solved numerically
until a steady state is reached at low levels. The main features of the linear solution are
seen in the numerical results, but with some notable differences: (i) the primary jet in the
numerical simulation requires a longer distance to attain a one-dimensional boundary-layer
structure and extends further downslope off the strip before intruding into the environment;
(ii) the numerically simulated outward environmental jet is narrower and more intense than
the inward jet, and has a pronounced wave-like structure.
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1 Introduction

When a sloping surface is cooled, a temperature contrast is set up between an air parcel
near the surface and the environmental air at the same elevation as the parcel. The buoy-
ancy force associated with this contrast projects in the along-slope direction and induces a
flow, commonly called the katabatic wind, that is directed downslope. The counterpart of
the katabatic wind in the case of sloping surface heating is the upslope anabatic wind. Slope
winds of both types are ubiquitous in complex terrain, especially when synoptic-scale forcing
is weak (Atkinson 1981; Mahrt and Larsen 1982; Vergeiner and Dreiseitl 1987; Whiteman
1990, 2000; Mahrt et al. 2001; Poulos and Zhong 2008). They exert a vital influence on
weather and climate, with impacts on air quality, agriculture, recreation, and fire manage-
ment (Dickerson and Gudiksen 1983; Broder and Gygax 1985; Sturman 1987; King et al.
1987; Segal et al. 1988; Nappo et al. 1989; Low 1990; Banta et al. 1996, 1997; Bossert 1997;
Millán et al. 1998; Hernández et al. 1998; Fernando et al. 2001; Barros et al. 2003; Lee et al.
2003; Kossmann and Sturman 2004; Finn et al. 2008; Sharples 2009; Gohm et al. 2009;
Fernando 2010).

An early milestone in the theory of slope flows was the Prandtl (1942) model of one-
dimensional slope flows. Prandtl solved the equations of motion and thermal energy for
the steady flow of a viscous fluid along a uniformly cooled (or heated) planar surface in
a stably stratified environment. In the original model, the surface forcing was specified in
terms of a temperature (buoyancy) disturbance. The solution was characterized by a low-level
jet capped by a weak return flow, while the buoyancy decayed rapidly in magnitude away
from the slope and changed sign in the return flow aloft. This model compared qualitatively
well with observations when the mixing parameters were appropriately tuned (Tyson 1968;
Hootman and Blumen 1983; Clements et al. 1989; Papadopoulos et al. 1997; Oerlemans
1998) or prescribed as height-dependent parameters (Grisogono and Oerlemans 2001). Flow
profiles corresponding to the Prandtl solutions have also been found in the analytical and
numerical studies of natural convection along a heated vertical wall immersed in a stably
stratified fluid (Shapiro and Fedorovich 2004a,b) and in a version of the Prandtl model with
the surface forcing specified in terms of the heat (buoyancy) flux (Fedorovich and Shapiro
2009a).

Analyses of real katabatic flows are complicated by complex basin geometries, interactions
with synoptic-scale flows, the presence of surface inhomogeneities arising from topographic
shading (e.g., upper slopes are shaded, while lower slopes are exposed to the sun), variations
in snow, ice, soil cover, soil moisture, cloud cover, or vegetation type, and the fact that these
flows are generally turbulent. Therefore, it may be unrealistic to expect a theory to provide
a satisfactory explanation of a slope flow observed at a specific location on a particular day.
However, useful insights may be gained into slope-flow phenomena by studying idealized
flows and focusing on individual aspects of the general problem. Two noteworthy studies
along those lines are the Egger (1981) and Kondo (1984) analyses of slope flows driven by
an inhomogeneous surface forcing. Their analyses can be thought of as two-dimensional
extensions of the Prandtl model.

Egger (1981) and Kondo (1984) considered the linearized governing equations for the
case where a planar slope is subject to a top-hat distribution of slope buoyancy (a cold or hot
surface strip running across the slope). The buoyancy varied down the slope but was constant
in the cross-slope direction [the sister problem of a downslope running cold strip was treated
by Axelsen et al. (2010)]. Their analyses revealed that the primary slope wind was connected
to twin environmental jets, one directed horizontally towards the slope and feeding into the
boundary layer, and one leaving the boundary layer and directed horizontally into the envi-
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ronment. Horizontally directed ejections from sloping boundaries are frequently observed in
valleys and basins, where they affect air quality (Vergeiner and Dreiseitl 1987; Lu and Turco
1994; Soriano et al. 2001; Fernando et al. 2001; Monti et al. 2002; Barros et al. 2003; Lee
et al. 2003; Gohm et al. 2009; Lehner and Gohm 2010). A far-propagating environmental
response to inhomogeneous forcing was also noted in Shapiro and Fedorovich (2007), where
an accelerating katabatic jet induced by linearly varying surface buoyancy down the slope
led to the formation of horizontal environmental jets that entered/left the katabatic boundary
layer. Similar jets were found in the numerical study of Burkholder et al. (2009).

This paper revisits the problem of two-dimensional katabatic flow driven by surface forc-
ings that vary downslope locally, as in Egger (1981), Kondo (1984), and Burkholder et al.
(2009). In Sect. 2 we present the linearized governing equations and show that a katabatic
flow driven by top-hat surface cooling is controlled by a single parameter—a non-dimen-
sional strip width. The governing equations are solved by Fourier methods in Sect. 3, and
examples are considered in Sect. 4. By including many Fourier components in the solution
(106 compared with 20 in Egger’s analysis), we obtain a high-resolution view of flows across
a range of strip widths. In Sect. 5 we extend the numerical analysis of Burkholder et al. (2009)
using a parallel version of the code used in that study. Simulating the flow in a very large
domain (to maximally delay effects of lateral boundaries) and with high resolution allows us
to explore nonlinear aspects of the problem. A summary follows in Sect. 6.

2 Governing Equations

We work in a slope-following right-hand Cartesian coordinate system (Fig. 1) with the X
axis directed downslope at an angle α to the horizontal coordinate X∗, and Z axis directed
perpendicular to the slope. The slope coincides with the surface Z = 0. All flow variables are
independent of the cross-slope (Y , into page) coordinate. With the Coriolis force neglected,
the velocity vector has only along-slope and slope-normal components, U and W , respec-
tively. For future reference, we note from Fig. 1 that on surfaces of constant elevation, the
following relation holds: Z = X tan α + const.

The Boussinesq governing equations for two-dimensional flow of a stably stratified non-
rotating fluid above a planar slope were presented in Shapiro and Fedorovich (2007). We con-
sider here the linearized boundary-layer version of those equations (X -derivatives neglected
in stress and diffusion terms; quasi-hydrostatic approximation made in slope-normal equation
of motion) in the steady state:

Fig. 1 Slope-following
coordinate system. The
along-slope (X) and
slope-normal (Z) coordinates are
inclined at an angle α to the
horizontal (X∗) and vertical (Z∗)
coordinates, respectively. Flow
variables are independent of the
cross-slope coordinate (Y ),
which points into the page

X*

Z
Z* 

X 

α

g 
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0 = −∂Π
∂X

− B sin α + ν
∂2U

∂Z2 , (1)

0 = −∂Π
∂Z

+ B cosα, (2)

0 = U N 2 sin α − W N 2 cosα + κ
∂2 B

∂Z2 , (3)

∂U

∂X
+ ∂W

∂Z
= 0. (4)

Here (1) is the along-slope equation of motion, (2) is the equation for quasi-hydrostatic
equilibrium, applicability of which to slope flows is discussed by Mahrt (1982) and Haiden
(2003), (3) is the thermal energy equation, and (4) is the mass conservation equation. The
normalized pressure perturbationΠ ≡ (P − P∞)/ρr is the difference between the pressure
P and the (hydrostatic) environmental pressure P∞, divided by a constant reference density
ρr . The buoyancy B ≡ β(Θ − Θ∞) is the difference between the potential temperature
Θ and the environmental potential temperature Θ∞ multiplied by a buoyancy parameter
β ≡ g/Θr , where Θr is a constant reference potential temperature, and g is the acceleration
due to gravity. We assume thatΘ∞ increases linearly with the vertical coordinate Z∗, so that
the environment is stably stratified (dΘ∞/dZ∗ > 0) with constant Brunt–Väisälä frequency
N ≡ √

(g/Θr)dΘ∞/dZ∗. The coefficients of eddy viscosity ν and thermal diffusivity κ are
also considered constant.

The lower boundary conditions are the no-slip condition, U (X, 0) = 0, the imperme-
ability condition, W (X, 0) = 0, and a specified distribution of buoyancy, B(X, 0) = f (X),
or of slope-normal buoyancy gradient, ∂B/∂Z(X, 0) = g(X). For brevity we refer to this
latter condition as the buoyancy flux condition, even though the actual surface buoyancy flux
is −κ∂B/∂Z(X, 0). All the dependent variables are considered to vanish as |X | → ∞ (a
necessary condition for the variables to be Fourier-transformable in X ) and be bounded as
Z → ∞.

To obtain a problem with as few degrees of freedom as possible, we introduce the non-
dimensional variables

x ≡ X

Xs
, z ≡ Z

Zs
, u ≡ U

Us
, w ≡ W

Ws
, π ≡ Π

Πs
, b ≡ B

Bs
, (5)

where

Zs ≡ (νκ)1/4

(N sin α)1/2
, Xs ≡ (νκ)1/4 cosα

N 1/2 sin3/2 α
,

Us ≡ Bs

N

(κ
ν

)1/2
, Ws ≡ Bs

N

(κ
ν

)1/2 sin α

cosα
, Πs ≡ Bs(νκ)

1/4 cosα

(N sin α)1/2
, (6)

and Bs (> 0) is the peak magnitude of the surface buoyancy (if buoyancy is specified) or the
normalized buoyancy gradient (if buoyancy flux is specified),

Bs ≡
⎧
⎨
⎩

max
X∈(−∞,∞)

|B(X, 0)| , (if buoyancy is specified),

max
X∈(−∞,∞)

∣∣Zs
∂B
∂Z (X, 0)

∣∣ , (if buoyancy flux is specified).
(7)

Apart from notational differences and O(1) numerical factors, the Zs and Us defined in (6)
are, respectively, the boundary-layer thickness and along-slope velocity scales in the Prandtl
(1942) slope flow model. In terms of these two Prandtl scales, the other scales in (6) can be
written as
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Fig. 2 Schematic illustration of the length-scale relation Xs ≡ Zs cot α. The slope-normal length scale Zs
is the thickness of the boundary layer in the one-dimensional (Prandtl) model. The along-slope length scale
Xs is the distance along the slope over which the elevation changes by the same amount as over the slope-
normal distance Zs. Since the elevation change from A to C (�Z∗ = Xs sin α) is the same as from A to B
(�Z∗ = Zs cosα), Xs = Zs cot α

Xs ≡ Zs cot α, (8a)

Ws ≡ Us tan α, (8b)

Πs ≡ Bs Zs cosα. (8c)

As seen in Fig. 2, Xs is the distance along the slope over which the elevation change is equal
to the depth scale of the Prandtl boundary layer Zs.

The non-dimensional versions of (1)–(4) are

0 = −∂π
∂x

− b + ∂2u

∂z2 , (9)

0 = −∂π
∂z

+ b, (10)

0 = u − w + ∂2b

∂z2 , (11)

∂u

∂x
+ ∂w

∂z
= 0. (12)

These equations have been cleared of all parameters—even non-dimensional parameters
such as the slope angle or Prandtl number. Accordingly, the only free parameters in the non-
dimensional problem are those associated with the thermal state of the slope. In the simple
case, where the surface buoyancy or buoyancy flux are top-hat functions of x with non-zero
values confined to a strip of dimensional length L (considered in Sect. 4), the non-dimensional
surface buoyancy or slope-normal buoyancy gradient has a peak magnitude of unity. Thus,
the resulting local flows are fully characterized by a single parameter—the non-dimensional
strip width

l ≡ L

Xs
= L

N 1/2 sin3/2 α

(νκ)1/4 cosα
. (13)

In view of the above interpretation of Xs, we see that l < 1 and l > 1 correspond to strips
whose elevation changes are, respectively, within one Prandtl boundary-layer thickness and
in excess of one Prandtl boundary-layer thickness.
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3 Fourier Analysis

With u and w eliminated in favor of a streamfunction ψ defined through

u = ∂ψ

∂z
, (14a)

w = −∂ψ
∂x
, (14b)

Equation 12 is satisfied identically, while Eq. 11 becomes

0 = ∂ψ

∂x
+ ∂ψ

∂z
+ ∂2b

∂z2 . (15)

Eliminating π by taking ∂/∂z (Eq. 9) − ∂/∂x (Eq. 10) yields a linear boundary-layer form
of cross-slope (Y -component) vorticity equation,

0 = − ∂b

∂x
− ∂b

∂z
+ ∂4ψ

∂z4 . (16)

Taken together, the first two terms in (16) describe the change in buoyancy along a surface of
constant elevation, −∂b/∂x − ∂b/∂z = −∂b/∂x∗ where x∗ ≡ X∗/Xs. Thus (16) expresses
a balance between the baroclinic generation of cross-slope vorticity and the slope-normal
diffusion of cross-slope vorticity.

Eliminating b from (15) and (16) yields

∂2ψ

∂x2 + 2
∂2ψ

∂x∂z
+ ∂2ψ

∂z2 + ∂6ψ

∂z6 = 0. (17)

We solve (17) by the method of Fourier transforms (Mathews and Walker 1970). Multiplying
(17) by e−ikx , integrating the result from x = −∞ to x = ∞, and setting ψ to vanish as
|x | → ∞, we obtain

d6ψ̂

dz6 + d2ψ̂

dz2 + 2ik
dψ̂

dz
− k2ψ̂ = 0, (18)

where ψ̂ is the Fourier transform ofψ . The transform and its inverse (which isψ) are related
as

ψ(x, z) = 1√
2π

∞∫

−∞
eikx ψ̂(k, z)dk, (19)

ψ̂(k, z) = 1√
2π

∞∫

−∞
e−ikxψ(x, z)dx . (20)

Applying the trial solution ψ̂ ∼ emz in (18) yields the polynomial equation,

m6 = − (ik + m)2 . (21)

Taking the square root of (21) yields the two cubic equations:

m3 = ± (im − k) . (22)

Thus, the solutions of (21) are the three solutions of (22) corresponding to the plus sign
together with the three solutions corresponding to the minus sign. Of these solutions, those
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Fig. 3 Implicit (parametric) solutions of Eq. 22: a wavenumber k j (φ) and b amplitude R j (φ) functions for
the three physically acceptable solutions. Thin solid lines display the j = 1 solution, which corresponds to
s1(φ) = 1. Bold solid lines display the j = 2 solution, which corresponds to s2(φ) = −1. Bold dashed lines
display the j = 3 solution, which corresponds to s3(φ) = 1 for 90◦ < φ < 120◦ and to s3(φ) = −1 for
240◦ < φ < 270◦

Fig. 4 Real, (a), and imaginary, (b), parts of the three physically acceptable solutions m j (k) of Eq. 22. Thin
solid line corresponds to the j = 1 solution. Bold solid line corresponds to the j = 2 solution. Bold dashed
line corresponds to the j = 3 solution

with positive real parts must be rejected to avoid blow-up of ψ̂ (and ψ) far above the slope.
The physically acceptable solutions are derived in Appendix A (Figs. 3, 4). Denoting these
solutions by m1, m2 and m3, the general solution for ψ̂ can be written as

ψ̂ = n1em1z + n2em2z + n3em3z, (23)

where the constants n1, n2, and n3 are to be fixed by the boundary conditions.
It can be shown that b also satisfies (17), and so its Fourier transform b̂ has the form of

(23), but with a different set of multiplicative constants. After relating these constants to
n1, n2, and n3 by considering the Fourier-transformed version of (15), we obtain

b̂ = − (m1 + ik)
n1

m2
1

em1z − (m2 + ik)
n2

m2
2

em2z − (m3 + ik)
n3

m2
3

em3z . (24)

In view of Eqs. 38, Eq. 24 reduces to

b̂ = in1m1em1z − in2m2em2z − isgn(k)n3m3em3z, (25)
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where sgn(k) = 1 for k > 0,−1 for k < 0. Applying the impermeability and no-slip
condition, in turn, in (23), yields

n1 + n2 + n3 = 0, (26)

n1m1 + n2m2 + n3m3 = 0. (27)

A third constraint on n1, n2, andn3 is obtained from a boundary condition for the buoyancy.
If the surface buoyancy b(x, 0) is specified, then (25) yields

i b̂0 = −n1m1 + n2m2 + sgn(k)n3m3, (28)

where b̂0 ≡ 1√
2π

∫ ∞
−∞ e−ikx b(x, 0)dx . If the surface buoyancy flux is specified, then we

evaluate ∂/∂z (Eq. 24) at z = 0, and simplify the resulting equation using (26), obtaining,

i
Q̂0

k
= n1

m1
+ n2

m2
+ n3

m3
, (29)

where Q̂0 ≡ 1√
2π

∫ ∞
−∞ e−ikx∂b(x, 0)/∂zdx . The b(x, 0) and ∂b(x, 0)/∂z functions are con-

sidered to vanish as |x | → ∞ but are otherwise arbitrary. The solutions for n1, n2, and n3

in these two scenarios are provided in Appendix B.
We now consider the particular case of katabatic flow driven by a surface buoyancy or

buoyancy flux that is proportional to the top-hat function

Tl(x) =
{

1, |x | < l
2 ,

0, otherwise,
(30)

where l is the non-dimensional forcing width. For the case of a top-hat buoyancy distribution
b(x, 0) = −Tl(x), the transformed surface buoyancy is

b̂0 = −
√

2

π

sin (kl/2)

k
. (31)

For a top-hat surface distribution of slope-normal buoyancy gradient ∂b(x, 0)/∂z = Tl(x)
(positive gradient is associated with a negative buoyancy flux), the transformed slope-normal
buoyancy gradient is

Q̂0 =
√

2

π

sin (kl/2)

k
. (32)

The solutions for ψ and b corresponding to these forcings are given in Appendices C and D.

4 Examples

In our evaluation of the top-hat solutions for l in the 0.5 to 40 range, the integrals in (51),
(52), (66), and (67) were approximated numerically by summing the integrands over intervals
k ∈ [−1000, 0−] and k ∈ [0+, 1000] with a spacing of �k = 0.002, i.e., 106 waves are
summed with the k = 0 point excluded to avoid a computational singularity. For larger l (up
to 100), the range of k was reduced by a factor of 4 to meet the computational requirements
of a larger physical domain. In both cases, the spectral resolution and range of k were deemed
sufficient for an accurate evaluation of the solution. Reductions of range or resolution on the
order of 25% produced almost imperceptible changes in the solutions over the domains of
interest.
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Fig. 5 Katabatic flow induced by a top-hat distribution of surface buoyancy of width l = 40. Contour plots
of a streamfunction ψ and b buoyancy b are obtained from the Fourier analysis. Contour intervals for ψ and
b are 0.05 and 0.025, respectively. All quantities are non-dimensional

Before examining these solutions, we consider some graphical implications of the non-
dimensionalization (5) and (6). Recall that on a constant elevation surface, Z = X tan α +
const, while the equivalent non-dimensional relation is z = x + const. Thus, on x−z plots
in which equal increments of plotting distance in the x and z directions correspond to equal
increments in the values of x and z, lines of constant elevation cross the slope at 45◦ angles.
Accordingly, if such plots are rotated by 45◦, as in some of our figures, then a horizontal
line represents constant elevation. This 45◦ graphical rotation property holds for all slope
angles. We also note that for typical slope angles, the non-dimensionalization compresses
the X axis relative to the Z axis. For α of 1◦ and 10◦, the X to Z axis compression factors
are ≈50 and ≈5, respectively. Thus, if one views an x−z plot in which equal increments of
plotting distance in the x and z directions correspond to equal increments in the values of x
and z, and wants to envision a corresponding X−Z plot in which the true aspect ratios of
flow structures are represented, then one should stretch the x−z plot in the x direction by a
factor of cot α.

The streamfunction and buoyancy fields for a top-hat distribution of slope buoyancy of
width l = 40 are shown in Fig. 5. The boundary-layer flow from x ≈ −10 to x ≈ 15 is
characterized by a shallow katabatic jet of negatively buoyant fluid topped by a weak return
flow of (slightly) positively buoyant fluid. As can be seen in Fig. 6, these features are in
excellent agreement with the Prandtl solution. Thus, even though the flow as a whole is
two-dimensional, the boundary-layer flow over the strip at sufficiently far distances from the
strip edges becomes one-dimensional.

Also evident in Fig. 5a are two jets that penetrate far into the environment: an inward jet
feeding into the katabatic jet near the upslope edge of the cold strip and an outward jet ema-
nating from the katabatic boundary-layer flow into the environment near the downslope edge
of the cold strip. These jets are nearly horizontal as they progress through the environment,
but turn abruptly downward or upward as they enter or leave the katabatic boundary layer.
The environmental jet speeds (not shown, but the speed can be inferred qualitatively from
streamline spacing) decrease with horizontal distance from the slope along the jet axis and are
substantially lower than the primary katabatic jet speed. The peak environmental jet speeds
are only ≈30% of the peak katabatic jet speed. The environmental jet streamlines in Fig. 5a
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Fig. 6 Slope-normal profiles of a along-slope velocity component u and b buoyancy b near the centre of
the cold strip (x = 0) for katabatic flow driven by a top-hat distribution of surface buoyancy of width l = 40,
the case considered in Fig. 5. Solid lines depict the solution from the Fourier analysis. Dashed lines depict the
corresponding Prandtl solution. All quantities are non-dimensional

are visually similar to the streamlines in the flow of a viscous stably stratified fluid toward a
line sink (cf. Fig. 3 of Koh 1966). Koh’s numerical and experimental analyses showed that
the viscous line sink flow satisfies a self-similarity principle in which the height of any given
streamline above the jet axis increases as the 1/3 power of distance from the sink. By means
of measurements of the thickness of our inward jet at three vertical cross sections along the
jet axis, we conclude that our inward jet is also well described by the same similarity model.
The thicknesses may be obtained subjectively by measuring the distance between upper and
lower streamlines on either side of the jet on a blown-up version of Fig. 5a. Measurements at
two of the cross sections are used to fix the origin of a virtual sink and fix the proportionality
constant in the 1/3 power law. The measured thickness of the jet at a third cross section was
found to be in good agreement with the power-law-predicted thickness.

The thermal structure of the environmental jets plays a crucial role in the vorticity dynam-
ics that makes those jets dynamically feasible. Because the inward jet entrains environmental
air of known characteristics, and the outward jet, however, is an extension of the katabatic
jet, we restrict our attention to the more straightforward analysis of the inward jet. Although
this jet has a pronounced horizontal velocity component, the streamlines in the upper flank
of the jet have a slight concave-down curvature, while the streamlines in the lower flank of
the jet have a slight concave-up curvature. Warming due to subsidence along the downward
curving streamlines results in small positive buoyancy values in the upper flank (Fig. 5b).
The largest values of b are located where the streamlines are curved the most, which is near
the top of the katabatic boundary layer. Accordingly, in the upper flank −∂b/∂x∗ > 0, and
there is baroclinic generation of positive (into page) Y -component of vorticity. Similarly,
in the lower flank, differential ascent in the presence of the ambient stable stratification
yields −∂b/∂x∗ < 0, and there is generation of negative Y -component of vorticity. These
baroclinically generated vorticity patterns permit the flow to be jet-like, i.e., to be nearly
unidirectional along a central jet axis, and decrease in strength above (into-page vorticity)
and below (out-of-page vorticity) the central axis.

Another interesting feature is a small rotor-like feature (vortex) that straddles the upslope
edge of the strip. This vortex is barely discernable in Fig. 5a, but can be seen in the close-up
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Fig. 7 Close-up view of a streamfunction ψ and b buoyancy b in the vicinity of the upslope edge of the cold
strip (x = −20) for the case shown in Fig. 5. A rotor-like feature in ψ appears in the baroclinic zone in the
immediate vicinity of this upslope edge. Contour intervals for ψ and b are 0.01 and 0.025, respectively. All
quantities are non-dimensional

view of Fig. 7a that has also been stretched to give the reader a true aspect ratio perspective
for the case of a small slope angle. Not surprisingly, the vortex is located within a zone of a
strong baroclinicity (Fig. 7b). The large horizontal buoyancy gradient near the upslope edge
of the cold strip produces the positive Y component vorticity characterizing the vortex. One
can also see in Fig. 7b a small elevated blob of negative buoyancy slightly upslope from the
strip edge. This negative buoyancy arises from the adiabatic cooling of the air parcels in the
rising branch of the upslope vortex.

In contrast, no vortex is found in the baroclinic zone on the downslope edge. Instead,
the positive horizontal buoyancy gradient near that edge produces the negative (out-of-page)
curvature vorticity that allows the katabatic jet to turn into the environment where it emerges
as the outward environmental jet. The transition of the inward environmental jet into the
katabatic jet near the upslope edge is more circuitous.

Also evident in Figs. 5b and 7b is a belt of warm air roughly centered above the upslope
edge of the cold strip at z ≈ 3. The peak value of the buoyancy in this warm belt is about 15%
of the magnitude of the slope buoyancy, which is unity. The warm belt arises from subsidence
warming where the inward environmental jet turns (descends) into the katabatic jet.

Thermal belts of warm air analogous to those found in our study have long been observed
along slopes in hilly or mountainous terrain. Thermal belts have been documented in North
Carolina, U.S.A. (Cox 1920; Dunbar 1966), New Zealand (Sturman et al. 1999), Japan
(Yoshino 1984; Kobayashi et al. 1994; Tanaka et al. 1998; Ueda et al. 2003), and other loca-
tions worldwide. These belts are often found during clear and calm nights in association
with cold air drainage flows, and the mechanism producing the warming usually attributed
to subsidence warming or to horizontal streaming of a warm counter flow toward the slope in
response to cold air drainage at lower levels (e.g., Yoshino 1984). Thus, the thermal belts in
our study likely share a key mechanism with some of the observed thermal belts, namely, the
changing characteristics of flow down the slope, induces the flow of warmer or potentially
warmer environmental air toward the slope. On the other hand, since the belts in the above
studies formed over terrain with significant changes in slope angle, and the belts in our study,
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Fig. 8 Katabatic flow induced by a top-hat distribution of surface buoyancy of width l = 1. Contour plots of
a streamfunction ψ and b buoyancy b obtained from the Fourier analysis. Contour intervals for ψ and b are
0.02 and 0.025, respectively. All quantities are non-dimensional

however, arose from an inhomogeneous buoyancy forcing on a uniform slope, the underlying
forcing mechanisms are different. We suggest that the mechanism of thermal belt formation
in our study is one of several possible modes that might be found in nature, a plausible
one in cases where a downslope acceleration of katabatic flow is caused by inhomogeneous
buoyancy forcing.

Solutions for other strip widths l in a 10–100 range (not shown) displayed the same struc-
tures—Prandtl-like katabatic jet, inward and outward environmental jets, upslope vortex,
and thermal belt—as found in the l = 40 case. Moreover, these structures were in very close
quantitative agreement with each other across this range of l. In other words, for large l,
the main flow features became independent of l. In this large-l regime, the length, velocity,
and buoyancy scales in (6) are not merely formal non-dimensionalization factors, but are the
actual scales characterizing the length, velocity, and buoyancy of flow structures (apart from
constants of proportionality).

The constants of proportionality can be obtained by examining flow structures in any of
the large-l solutions. For instance, a dimensional height scale for the upslope vortex, defined
as, say, the distance of the stagnation point inside the vortex above the slope, is of the form
hvort = cvort Zs, where cvort is the non-dimensional height of the vortex. From Fig. 7a, we see
that cvort ≈ 0.8, and we obtain a large-l relation hvort = 0.8(νκ)1/4(N sin α)−1/2. Similarly,
we find the height of the peak buoyancy in the warm belt is hbelt = cbelt Zs, where cbelt ≈ 3.
The main differences in the large-l solutions are in the spacing between the environmental
jets and in the along-slope extent of the Prandtl-like jet, both of which, not surprisingly,
increase with l. A strip width of l = 10 is the approximate lower bound of l for the full
development of a Prandtl flow regime.

The streamfunction and buoyancy fields for l in the range from 0.5 to 5 can be broadly
represented by the l = 1 case (Fig. 8). In these smaller l cases, the primary katabatic jet does
not fully develop into a Prandtl jet, and it is weaker than in the large l cases. Environmental
jets do form, but they no longer penetrate far into the environment. Instead, the jets merge
above the slope, with merger occurring progressively closer to the slope as l decreases. The
circulation associated with these jets is also more vortex-like than before. Indeed, at some
point in the succession of decreasing l, what we perceive to be counter-directed environ-
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Fig. 9 Close-up view of a streamfunction ψ and b buoyancy b obtained from the Fourier analysis in the
vicinity of the upslope edge of the cold strip (x = −20) for katabatic flow induced by a top-hat distribution of
surface buoyancy flux of width l = 40. Contour intervals for ψ and b are 0.01 and 0.025, respectively. Peak
slope buoyancy is ≈−1.6. All quantities are non-dimensional

mental jets is perceived as a large vortex. However, on the upslope edge of the strip, a small
vortex is still found, as in the large l solutions.

We also considered local katabatic flows induced by top-hat distributions of surface buoy-
ancy flux. The primary katabatic jets, large-l Prandtl regimes, counter-flowing environmental
jets, vortices, and thermal belts with peak buoyancy ≈15% of the peak magnitude of the sur-
face buoyancy were all present in these flows and strongly resembled those for the flows
driven by a top-hat surface buoyancy disturbance. The most significant difference appeared
to be a wider and weaker upslope vortex and associated baroclinic zone in the flux-forcing
case. The larger lateral extension of the zone of negative buoyancy near the strip edge in
that case was due to the zero-buoyancy-flux boundary condition outside of the strip. This
permitted the negative buoyancy arising from adiabatic cooling in the ascending branch of
the vortex to diffuse down to the surface. Such surface cooling is precluded by a zero-buoy-
ancy boundary condition. A close-up view of the vortex and baroclinic zone for l = 40 is
presented in Fig. 9 (cf. Fig. 7). The corresponding plots of u (not shown) indicate that the
ratio of peak u in the upslope vortex to peak u in the primary katabatic jet decreases from
≈0.5 in the buoyancy-forced case to ≈0.3 in the flux-forced case.

5 Numerical Solution of the Nonlinear Problem

The nonlinear governing equations were solved numerically for the initial value problem in
which a top-hat surface buoyancy forcing was suddenly imposed at t = 0, and thereafter
maintained. These solutions were used to verify the analytic results for a weak thermal dis-
turbance, elucidate the nonlinear aspects of the flow driven by a strong thermal disturbance,
and examine the transient development of the flow leading to the steady state. The governing
parameters were chosen to correspond to the flow over a strip with non-dimensional width
of l ≈ 40, a case considered in Sect. 4.
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The numerical procedures used herein are patterned on the studies of Fedorovich et al.
(2001) and were previously employed in the natural convection and katabatic studies of
Shapiro and Fedorovich (2004b, 2006, 2008), Fedorovich and Shapiro (2009a,b), and
Burkholder et al. (2009). The numerically solved equations are the Boussinesq equations
of motion, thermal energy, and mass conservation without boundary-layer or hydrostatic
approximations, together with the standard elliptic equation for the perturbation pressure
that results from taking the divergence of the equations of motion. Although the code is gen-
erally capable of simulating three-dimensional phenomena, it was used here in an effectively
two-dimensional mode by allocating only four grid cells in the cross-slope direction. The
model equations are discretized on a staggered, slope-following Cartesian grid with a uniform
spacing in a rectangular domain. The spatial derivatives are discretized with second-order
finite difference expressions, and the prognostic variables are integrated using a leapfrog
scheme with weak Asselin filter. The elliptic equation for the perturbation pressure is solved
at each timestep with a fast-Fourier transform technique over planes tangent to the slope, and
using a tri-diagonal matrix inversion in the slope-normal direction. On the slope, no-slip and
impermeability conditions are imposed on the velocity components, the surface buoyancy
is prescribed, and the slope-normal derivative of the perturbation pressure is calculated as a
residual from the slope-normal equation of motion. At the top of the computational domain,
the normal gradients of all variables are set to zero. Periodic boundary conditions are imposed
for all variables on the four lateral boundaries.

Because of the stringent computational grid requirements described below, it was prefera-
ble to implement a parallel version of the code. The model domain was decomposed into 256
equal-sized volumes partitioned in the along-slope direction. The slope-normal and cross-
slope dimensions of each sub-domain were equal to those of the original domain. Each sub-
domain was assigned a processor to perform the numerical calculations, and inter-processor
communication was handled through the message–passage interface subroutine calls.

The physical parameters in our numerical experiments were set to α = 15◦, N =
0.01 s−1, ν = κ = 1 m2 s−1, and L = 2.8 km (l ≈ 40). Preliminary tests (not shown)
were made to determine appropriate grid spacing and computational domain dimensions.
We sought a grid spacing that would resolve the primary katabatic jet and a computational
domain that would allow a (nearly) steady state to be realized at low levels over several tens of
Prandtl boundary-layer depths before artifacts arising from the upper and lateral boundaries
began to contaminate the solution. A grid spacing of �X = �Z = 2 m, domain height of
H ≈ 8.1 km and domain width of D ≈ 32.7 km allowed us to satisfy these competing resolu-
tion and size requirements, and was at the edge of our computational resources. The domain
sizes considered here are substantially larger than those adopted in Burkholder et al. (2009).

Next, a quasi-linear flow regime was simulated numerically by imposing a small (1 K)
perturbation of the strip temperature. Gravity waves arose in the flow from the applied abrupt
thermal forcing, and the largest amplitude waves appeared to be generated near the downslope
edge of the strip, where the primary katabatic jet decelerated. As these waves propagated away
from the slope, an expanding steady-state flow structure was left behind. The steady-state
solution (not shown) was compared with the purely linear boundary-layer solution described
in Sect. 4. All the features in the purely linear boundary-layer solution (katabatic jet, counter-
flowing environmental jets, upslope vortex, and thermal belt) were obtained in the numerical
solution and both solutions were generally in close agreement. The largest differences were
in the intensity of the thermal belt and vortex, both of which were slightly (≈20%) weaker in
the numerical simulation. That the largest differences were near a strip edge is not surprising
since the numerical model includes along-slope derivatives in the stress and diffusion terms
that were neglected in the boundary-layer theory.
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Fig. 10 Numerical solution for a flow induced by a top-hat distribution of surface buoyancy at t = 81 min.
The large vertical extent of the plot highlights the environmental jets and gravity waves (at the expense of
the shallow katabatic jet). Non-dimensional buoyancy is shaded in blue and red. Streamfunction (normal-
ized) is contoured with solid lines. The slope temperature perturbation is 3 K. Other parameters are α =
15◦, N = 0.01 s−1, ν = κ = 1 m2 s−1, and the strip width is L = 2.8 km (l ≈ 40). The cold strip extends
approximately from X = 15 km to X = 17.8 km. Only a portion of the computational domain is depicted

Non-linear effects grew in importance in experiments with progressively larger slope
thermal perturbations, and the model became numerically unstable for a slope temperature
perturbation of 5 K. The instability appears to have arisen from convective overturning in
gravity waves emanating from the downslope edge of the strip. The development of tur-
bulence in regions of breaking internal waves, even over two-dimensional obstacles, is a
fundamentally three-dimensional process (Yakovenko et al. 2011).

In the remainder of this section, we focus on results of simulation with a slope temperature
perturbation of 3 K, an experiment in which nonlinear effects could be clearly identified in
an extensive steady-state wake. A large-scale overview of the buoyancy and streamfunction
fields for this case at t = 81 min is presented in Fig. 10, and a close-up view of those fields
and the U and W fields is presented in Fig. 11. At the considered time, a steady state had
been attained at low levels, roughly for z < 300 m, but transient waves were still propagating
at middle and upper levels. Although the gross features of the primary katabatic jet and envi-
ronmental jets at this time are similar to those in the linear solution, there are some notable
differences. First, because of the advection terms, the primary katabatic jet extends further
downslope from the strip than it does in the linear case. The layer of strongly negatively
buoyant air extends ≈0.5 km down the slope, while the jet of high momentum air extends
nearly 1 km down the slope. That the layer of negative buoyancy does not extend as far
down the slope as the high-momentum air (the jet actually becomes positively buoyant for
≈0.5 km before turning away from the slope) can be attributed to warming of the jet due to
subsidence. Since the katabatic jet has overshot its equilibrium level by the time it turns away
from the slope, the mechanism is present for this jet to have gravity-wave-like characteristics
as it exits into the environment. Note the pronounced serpentine structure of the velocity and
streamfunction in the lowest ≈300 m of the outward environmental jet. Results from other
times indicate that this serpentine structure, like the other low-level structures, is nearly in a
steady state. A pronounced gravity-wave signature attending decelerating katabatic flow was
a key feature of the inhomogeneously forced flows in Shapiro and Fedorovich (2007).

As in the linear solution, the horizontal jets in the nonlinear solution expand gradually
with distance from the slope and penetrate deeply into the environment, with warm air over-
lying cold air in the inward jet, and an opposite thermal arrangement in the outward jet
(Figs. 10, 11). However, in contrast to the symmetric arrangement in the linear solution,

123



264 A. Shapiro et al.

Fig. 11 Close up view of U and W (m s−1), b, andψ (normalized) for the flow case illustrated in Fig. 10. The
cold strip extends approximately from X = 15 km to X = 17.8 km. The colour bars are chosen to highlight
structures above the primary katabatic jet. Values exceeding the limits in the colour bars are present in and
near the primary katabatic jet

Fig. 12 Down-slope velocity component U as a function of Z in the primary katabatic jet at four locations
along the cold strip (yellow bar in inset) for the flow case shown in Fig. 10: blue—at upslope edge of strip;
violet—at distance L/8 downstream from upslope edge of strip; red at centre of strip; and black at distance
L/8 upstream from downslope edge of strip

the inward environmental jet in the numerical solution is wider and weaker than the outward
environmental jet. The widened inward jet is associated with a widened zone of entrainment
of environmental air into the primary katabatic jet. Accordingly, the Prandtl-jet (boundary-
layer) regime for U is delayed down the slope. Slope-normal profiles of U and b at four
locations along the cold strip are shown in Figs. 12 and 13, respectively. Within a downslope
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Fig. 13 Non-dimensional buoyancy b as a function of Z in the primary katabatic jet at four locations along
the cold strip (yellow bar in inset) for the flow case shown in Fig. 10. The locations are identified in Fig. 12

distance of L/8 from the upslope edge of the strip (violet curve), the b profile is in good
agreement with the Prandtl solution. In contrast, the U profile develops more gradually down
the slope and is still only ≈75% of the value of the peak U (3.22 m s−1) in the Prandtl solution
at the half-width location. At a distance L/8 upslope from the lower edge of the strip, the
height of the jet maximum differs imperceptibly from the height obtained from the Prandtl
solution (≈21.8 m), and the peak U now differs from the Prandtl value by less than 10%.

Finally, we note that although there was an upslope vortex present in this numerical simu-
lation (not shown), its lower branch (upslope flow) was very weak and possibly not adequately
resolved. A shallow (Z < 6 m) zone of weak upslope vortex flow is evident in the U profile
on the upslope edge of the strip (blue curve of Fig. 12).

6 Summary

The two-dimensional flow of a stably stratified fluid down an inhomogeneously cooled planar
slope was studied within a linearized boundary-layer framework. The slope angle, Brunt–
Väisälä frequency, and coefficients of eddy viscosity and diffusivity were treated as constants.
Non-dimensional variables were introduced to clear the problem of as many parameters as
possible. For flows induced by a top-hat profile of surface buoyancy or buoyancy flux, the
problem was controlled by a single parameter—the non-dimensional cold strip width l. For
large l, the flow variables became independent of l, i.e., they became universal functions of
the non-dimensional variables. Key flow structures revealed through the linear solution were

– a primary katabatic jet that became the one-dimensional Prandtl jet for sufficiently wide
strips,

– counter-directed (inward and outward) horizontal environmental jets that entered and left
the katabatic boundary-layer region, and penetrated deeply into the environment,

– a low-level vortex that straddled the baroclinic zone on the upslope edge of the strip, and
– a warm thermal belt that overlaid the boundary layer above the upslope edge of the strip.

Numerical simulations of the corresponding nonlinear problem were used to verify the ana-
lytic study, elucidate the nonlinear aspects of the flow, and examine the transient development
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of the flow leading to the steady state. The main features in the linear solution were also found
in the nonlinear solution but with some notable differences:

– the development of a Prandtl regime was delayed down the strip;
– buoyancy and momentum advection became noticeable downslope of the strip;
– the outward jet was narrower and more intense than the inward jet; and
– the outward jet, which arose from the primary katabatic jet after it had overshot its equi-

librium level, had a pronounced serpentine structure as it intruded into the environment.

The two-dimensional laminar problem considered in this article was investigated as a prelude
to more realistic numerical studies of turbulent katabatic flows.
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Appendix A: Solution of Cubic Equation 22

Although analytic formulae (Cardano formulae) are available for the solutions of cubic equa-
tions, the one-third roots appearing in those formulae have multiple branches, some of which
do not lead to solutions (Jeffrey and Norman 2004). Thus, in practice, use of the explicit
formulae might require that all of the candidate solutions be verified. Fortunately, (22) can
be readily solved implicitly, thus bypassing the need to evaluate many candidate solutions.

In an explicit approach, one can think of the solutions m j of (22) as functions of k having
the polar form m j (k) = R j (k)eiφ j (k), where R j and φ j are k-dependent amplitude and phase
functions, respectively. In contrast, in an implicit (parametric) approach, one may treat k as
a set of functions k j (φ) of the phase parameter φ, and work with m j in the polar form:

m j (φ) = R j (φ)e
iφ, (33a)

k j = k j (φ). (33b)

To restrict attention to m j with negative real part, one need only consider φ in the range
π/2 < φ < 3π/2.

We consider (22) in the form:

m3
j = s j

(
im j − k j

)
, (34)

where s j = 1 or − 1. Applying (33a) and (33b) in (34), and taking real and imaginary parts
yields

R3
j cos 3φ + s j R j sin φ + s j k j = 0, (35)

R3
j sin 3φ − s j R j cosφ = 0, (36)

from which follows the parametric solution:

k j (φ) = −R j (φ)
cos 2φ

sin 3φ
, (37a)

R j (φ) =
√

s j
cosφ

sin 3φ
. (37b)
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Setting s j to 1 and −1, in turn, (37a) and (37b) yields the implicit solutions shown in
Fig. 3. We adopt the following ordering convention: (i) the j = 1 solution corresponds to
s1(φ) = 1; (ii) the j = 2 solution corresponds to s2(φ) = −1; and (iii) the j = 3 solution
corresponds to s3(φ) = 1 for π/2 < φ < 2π/3 (90◦ < φ < 120◦), and s3(φ) = −1 for
4π/3 < φ < 3π/2 (240◦ < φ < 270◦). From the behaviour of the k3(φ) curves in Fig. 3,
we see that the j = 3 solution corresponds to s3(φ) = 1 for k3 < 0, and to s3(φ) = −1 for
k3 > 0.

The explicit solutions for m j can be obtained from the implicit solutions by treating k as
the independent variable and interpolating the implicit solutions to a grid of equally spaced
points along the k axis. The real and imaginary parts of these solutions are shown in Fig. 4.

For the analysis of the b̂ variable, it will be convenient to work with (34) rewritten sepa-
rately for j = 1, 2 and 3 as

m1 + ik

m2
1

= −im1, (38a)

m2 + ik

m2
2

= im2, (38b)

m3 + ik

m2
3

=
{

im3, k > 0,
−im3, k < 0.

(38c)

Appendix B: Solution for n1, n2, and n3

In the case where the slope buoyancy is specified, the constants n1, n2, and n3 satisfy the
three linear algebraic equations (26)–(28). These equations are solved as

n1 =

⎧⎪⎪⎨
⎪⎪⎩

− i b̂0

2m1
, k > 0,

− i b̂0

2m2

(m3 − m2)

(m3 − m1)
, k < 0,

(39)

n2 =

⎧⎪⎪⎨
⎪⎪⎩

i b̂0

2m1

(m3 − m1)

(m3 − m2)
, k > 0,

i b̂0

2m2
, k < 0,

(40)

n3 =

⎧⎪⎪⎨
⎪⎪⎩

i b̂0

2m1

(m1 − m2)

(m3 − m2)
, k > 0,

i b̂0

2m2

(m1 − m2)

(m3 − m1)
, k < 0.

(41)

After rationalizing the denominators in (39)–(41), and using the polar form m j =
R j exp(iφ j ) introduced in Appendix A, we obtain

n1 =

⎧⎪⎪⎨
⎪⎪⎩

− i b̂0

2R1
e−iφ1 , k > 0,

− i b̂0

2R2

R2
3e−iφ2 − R1 R3e−i(φ1+φ2−φ3) − R2 R3e−iφ3 + R1 R2e−iφ1

R2
1 + R2

3 − 2R1 R3 cos(φ1 − φ3)
, k < 0,

(42)
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n2 =

⎧⎪⎪⎨
⎪⎪⎩

i b̂0

2R1

R2
3e−iφ1 − R2 R3e−i(φ1+φ2−φ3) − R1 R3e−iφ3 + R1 R2e−iφ2

R2
2 + R2

3 − 2R2 R3 cos(φ2 − φ3)
, k > 0,

i b̂0

2R2
e−iφ2 , k < 0,

(43)

n3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i b̂0

2R1

R2
2e−iφ1 − R2 R3e−i(φ1−φ2+φ3) + R1 R3e−iφ3 − R1 R2e−iφ2

R2
2 + R2

3 − 2R2 R3 cos(φ2 − φ3)
, k > 0,

− i b̂0

2R2

R2
1e−iφ2 − R1 R3e−i(−φ1+φ2+φ3) + R2 R3e−iφ3 − R1 R2e−iφ1

R2
1 + R2

3 − 2R1 R3 cos(φ1 − φ3)
, k < 0.

(44)

In the case where the buoyancy flux is specified, n1, n2, and n3 satisfy (26), (27), and (29).
These equations are solved as

n1 = i Q̂0

k

m1m2m3

(m3 − m1) (m2 − m1)
, (45)

n2 = − i Q̂0

k

m1m2m3

(m3 − m2) (m2 − m1)
, (46)

n3 = i Q̂0

k

m1m2m3

(m3 − m1) (m3 − m2)
, (47)

or, after rationalizing the denominators,

n1 = i Q̂0 R1 R2 R3

k

R2 R3eiφ1 −R1 R3eiφ2 −R1 R2eiφ3 + R2
1ei(−φ1+φ2+φ3)

[
R2

1 + R2
3 −2R1 R3 cos(φ1−φ3)

] [
R2

1 + R2
2 −2R1 R2 cos(φ1−φ2)

] ,
(48)

n2 = i Q̂0 R1 R2 R3

k

R1 R3eiφ2 −R2 R3eiφ1 −R1 R2eiφ3 + R2
2ei(φ1−φ2+φ3)

[
R2

2 + R2
3 −2R2 R3 cos(φ2−φ3)

] [
R2

1 + R2
2 − 2R1 R2 cos(φ1−φ2)

] ,
(49)

n3 = i Q̂0 R1 R2 R3

k

R2
3ei(φ1+φ2−φ3) − R2 R3eiφ1 −R1 R3eiφ2 + R1 R2eiφ3

[
R2

1 + R2
3 −2R1 R3 cos(φ1−φ3)

] [
R2

2 + R2
3 −2R2 R3 cos(φ2−φ3)

] .
(50)

Appendix C: Solution for Flow Driven by a Top-Hat Surface Buoyancy

For the case of a top-hat surface buoyancy distribution, the transformed slope buoyancy is
given by (31). Applying (42)–(44) and (31) in (23) and (25), and taking the inverse transforms,
yields the solution for ψ and b as

ψ = −
∞∫

0

sin(kl/2)

2πk R1

3∑
j=1

ez R j cosφ j A+
j dk −

0∫

−∞

sin(kl/2)

2πk R2

3∑
j=1

ez R j cosφ j A−
j dk, (51)

b=−
∞∫

0

sin(kl/2)

2πk R1

3∑
j=1

ez R j cosφ j R j B+
j dk−

0∫

−∞

sin(kl/2)

2πk R2

3∑
j=1

ez R j cosφ j R j B−
j dk, (52)

where A+
j , A−

j , B+
j , and B−

j ( j = 1, 2, 3) are planar wave functions of the argument

χ j ≡ kx + z R j sin φ j . (53)
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These wave functions are obtained as

A+
1 ≡ sin(χ1 − φ1),

(54)

A+
2 ≡ −R2

3 sin(χ2−φ1)+R2 R3 sin(χ2−φ1−φ2+φ3)+R1 R3 sin(χ2−φ3)−R1 R2 sin(χ2−φ2)

R2
2 +R2

3 −2R2 R3 cos(φ2−φ3)
,

(55)

A+
3 ≡ −R2

2 sin(χ3−φ1)+R2 R3 sin(χ3−φ1+φ2−φ3)−R1 R3 sin(χ3−φ3)+R1 R2 sin(χ3−φ2)

R2
2 +R2

3 −2R2 R3 cos(φ2 − φ3)
,

(56)

A−
1 ≡ R2

3 sin(χ1−φ2)−R1 R3 sin(χ1−φ1−φ2+φ3)−R2 R3 sin(χ1−φ3)+R1 R2 sin(χ1−φ1)

R2
1 +R2

3 −2R1 R3 cos(φ1−φ3)
,

(57)

A−
2 ≡ − sin(χ2 − φ2), (58)

A−
3 ≡ R2

1 sin(χ3−φ2)−R1 R3 sin(χ3+φ1−φ2−φ3)+R2 R3 sin(χ3−φ3)−R1 R2 sin(χ3−φ1)

R2
1 +R2

3 − 2R1 R3 cos(φ1 − φ3)
,

(59)

B+
1 ≡ cosχ1, (60)

B+
2 ≡ R2

3 cos(χ2+φ2−φ1)−R2 R3 cos(χ2−φ1+φ3)−R1 R3 cos(χ2+φ2−φ3)+R1 R2 cosχ2

R2
2 +R2

3 −2R2 R3 cos(φ2 − φ3)
,

(61)

B+
3 ≡ R2

2 cos(χ3−φ1+φ3)−R2 R3 cos(χ3−φ1+φ2)+R1 R3 cosχ3−R1 R2 cos(χ3−φ2+φ3)

R2
2 +R2

3 −2R2 R3 cos(φ2−φ3)
,

(62)

B−
1 ≡ R2

3 cos(χ1 + φ1 − φ2)− R1 R3 cos(χ1−φ2+φ3)−R2 R3 cos(χ1+φ1−φ3)+R1 R2 cosχ1

R2
1 + R2

3 − 2R1 R3 cos(φ1−φ3)
,

(63)

B−
2 ≡ cosχ2, (64)

B−
3 ≡ R2

1 cos(χ3−φ2+φ3)−R1 R3 cos(χ3+φ1−φ2)+R2 R3 cosχ3 − R1 R2 cos(χ3−φ1+φ3)

R2
1 + R2

3 −2R1 R3 cos(φ1−φ3)
.

(65)

Appendix D: Solution for Flow Driven by a Top-Hat Surface Buoyancy Flux

For the case of a top-hat distribution of surface buoyancy flux, the transformed slope-normal
buoyancy gradient is given by (32). Applying (48)–(50) and (32) in (23) and (25), and taking
the inverse transforms, yields

ψ = −
∞∫

−∞

sin(kl/2)

πk2 R1 R2 R3

3∑
j=1

ez R j cosφ j C j dk, (66)

b =
∞∫

−∞

sin(kl/2)

πk2 R1 R2 R3

3∑
j=1

ez R j cosφ j R j D j dk, (67)
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where the planar wave functions C j and D j ( j = 1, 2, 3) are given by:

C1 ≡ R2 R3 sin(χ1+φ1)−R1 R3 sin(χ1+φ2)−R1 R2 sin(χ1 + φ3)+R2
1 sin(χ1−φ1 + φ2+φ3)[

R2
1 +R2

3 −2R1 R3 cos(φ1−φ3)
] [

R2
1 +R2

2 −2R1 R2 cos(φ1−φ2)
] ,

(68)

C2 ≡ R1 R3 sin(χ2+φ2)−R2 R3 sin(χ2 + φ1)−R1 R2 sin(χ2+φ3)+R2
2 sin(χ2 + φ1−φ2+φ3)[

R2
2 +R2

3 −2R2 R3 cos(φ2−φ3)
] [

R2
1 +R2

2 − 2R1 R2 cos(φ1−φ2)
] ,

(69)

C3 ≡ R2
3 sin(χ3+φ1+φ2−φ3)−R2 R3 sin(χ3+φ1)−R1 R3 sin(χ3+φ2)+R1 R2 sin(χ3+φ3)[

R2
1 + R2

3 −2R1 R3 cos(φ1−φ3)
] [

R2
2 + R2

3 − 2R2 R3 cos(φ2−φ3)
] ,

(70)

D1 ≡− R2 R3 cos(χ1+2φ1)−R1 R3 cos(χ1+φ1+φ2)−R1 R2 cos(χ1 + φ1 + φ3)+ R2
1 cos(χ1+φ2+φ3)[

R2
1 +R2

3 −2R1 R3 cos(φ1−φ3)
] [

R2
1 +R2

2 −2R1 R2 cos(φ1−φ2)
] ,

(71)

D2 ≡ R1 R3 cos(χ2+2φ2)−R2 R3 cos(χ2+φ1+φ2)+R2
2 cos(χ2+φ1+φ3)−R1 R2 cos(χ2 + φ2+φ3)[

R2
2 + R2

3 − 2R2 R3 cos(φ2−φ3)
] [

R2
1 + R2

2 −2R1 R2 cos(φ1−φ2)
] ,

(72)

D3 ≡sgn(k)
R1 R2 cos(χ3+2φ3)+R2

3 cos(χ3+φ1+φ2)− R2 R3 cos(χ3+φ1+φ3)−R1 R3 cos(χ3+φ2 + φ3)[
R2

1 +R2
3 −2R1 R3 cos(φ1−φ3)

] [
R2

2 +R2
3 −2R2 R3 cos(φ2−φ3)

] ,

(73)

where χ j ≡ kx + z R j sin φ j .
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