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Abstract
We obtain an analytical model solution to an idealization of an urban heat island (UHI) 
circulation—the steady shallow convective flow of a viscous stably stratified fluid over a 
differentially heated lower boundary without system rotation (no Coriolis force) or back-
ground wind. The coupled linearized equations of motion and thermal energy are solved for 
flows in two-dimensional Cartesian (slab-symmetric) and axisymmetric geometries forced 
by laterally varying surface buoyancies considered as Gaussian and parabolic arch func-
tions. The scaled problem is free of governing parameters, and the solutions are universal. 
In all cases the flow is dominated by an in-up-out circulation. The updraft is stronger in 
the axisymmetric case than in the slab-symmetric case, while the surrounding downdraft, 
and the inflow and outflow branches of the circulation are stronger in the slab-symmetric 
case. These differences are explained in terms of the response of the perturbation pressure 
to the thermal forcing in the different geometries. The scalings themselves provide insight 
into observations that daytime UHI circulations can be stronger than nighttime circulations 
despite the relative weakness of urban–rural temperature contrasts during the daytime.

Keywords Buoyantly driven circulation · Stratified fluid · Turbulent Prandtl number · 
Urban heat island

1 Introduction

The urban heat island (UHI) refers to the state of warmth of a large urban complex rela-
tive to its rural surroundings [60]. Although urban areas are often warmer than their sur-
roundings during the afternoon and nighttime hours, the urban–rural temperature contrasts 
are usually the strongest at night, particularly when skies are clear and background winds 
are weak. These contrasts are typically 1–2 K during the day [16, 34, 36, 42] and 5–8 K 
at night [58, 59], though with much spatial and temporal variability associated with size 
of the urban complex, land use, vegetation, topography, meteorological conditions, and 
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season [12, 38, 42, 78, 85]. The relatively warm air in the UHI (sometimes referred to 
as a heat dome) is often capped by a crossover layer in which the air is cooler than in the 
rural environment at the same elevation, though the horizontal temperature gradient in that 
layer is not as strong as in the heat dome [6, 17, 59, 60, 74, 77]. The thermodynamic and 
dynamical characteristics of UHIs are reviewed in Garstang et al. [30], Oke [59, 60], Born-
stein [8], Fernando et al. [26], Arnfield [2], and Kanda [41]. The environmental, social, and 
economic impacts of UHIs are reviewed in Phelan et al. [62].

A dynamical feature of particular importance for urban air quality and weather is the 
mesoscale circulation generated by urban–rural temperature contrasts in UHIs [5, 7, 9, 19, 
23, 24, 27, 29, 34, 36, 49, 52, 63, 69, 70, 81]. In its most idealized form (associated with 
low background wind speeds), the urban heat island circulation1 (UHIC) consists of an 
updraft extending over much of the urban area, a compensating downdraft over the rural 
surroundings, low-level convergent inflow, and divergent flow aloft. The UHIC can extend 
horizontally two or three times the diameter of a city [25, 34, 49]. Remarkably, despite the 
nighttime maximum in urban–rural temperature contrasts, the UHIC in conditions of weak 
background winds can be strongest during the daytime [7, 29, 49, 69, 70, 81], although 
nocturnal preferences for the stronger UHIC have also been documented [5, 19].

UHICs can be difficult to detect in observational datasets. Due to inhomogeneities in the 
urban setting associated with city morphology, orography, and the presence of parks and 
urban forests, the signatures of a UHIC may be conflated with the signatures of small-scale 
intra-urban circulations [20, 50, 75]. Additionally, in locations where an urban area is close 
to mountains or large bodies of water, a UHIC may interact with a slope flow, sea breeze, 
or other mesoscale circulation [26–29, 31, 39, 63, 84]. Moreover, even in relatively benign 
synoptic conditions, background winds can be as strong as UHIC winds. Because of these 
complexities, UHICs are often studied as idealized flows in controlled experiments using 
analytical [3, 4, 33, 43, 44, 54, 61, 71, 80], numerical [15, 21, 33, 35, 36, 43, 45, 49, 55, 56, 
66], or laboratory [11, 22, 43, 45, 51, 52, 57, 64] models.

In this paper we revisit an analytical description of one of the basic conceptual models 
of a UHIC—the steady shallow convective flow of a viscous and diffusive stably strati-
fied fluid over a differentially heated lower boundary without system rotation (no Coriolis 
force) or background wind. Our work puts on record solutions for such flows driven by the 
same specified surface buoyancy function but considered in slab-symmetric and axisym-
metric geometries. Our approach is similar to the linear analyses conducted in Kimura [43] 
(hereafter K75), and we offer a disclaimer similar to the one therein: we seek insights into 
the basic dynamical response of the atmosphere to the differential heating of the underly-
ing surface, but do not directly simulate a heat island circulation.

Our study has several features in common with previous linear analyses of heat island 
circulations and related phenomena, which we now review. Attention is restricted to analy-
ses in which a thermal energy equation (containing a thermal diffusion term that mediates 
the heating of the atmosphere by the underlying surface) is used along with the equations 
of motion to couple the dynamical and thermal fields. In his classification of wind types, 
Jeffreys [40] described antitripic2 winds, a class of atmospheric motions that includes 

1 Also known as an urban breeze (e.g., [49]), urban breeze circulation (UBC; e.g., [66]), country breeze 
(e.g., [5]), country wind (e.g., [27]), or buoyancy and turbulence driven atmospheric circulation (BTDAC; 
e.g., [24]).
2 Defined as flows in which the frictional terms in the equations of motion are larger than the Coriolis and 
acceleration terms.
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land and sea breezes. The linearized two-dimensional Cartesian (slab-symmetric) equa-
tions of motion and thermal energy were solved for the steady motion of a viscous stably 
stratified fluid over a lower boundary whose temperature varied laterally as a sinusoid. No 
provision was made for the Coriolis force, a background wind, or height variations in the 
eddy viscosity or diffusivity coefficients. A quasi-linearized skin friction condition was 
imposed on the horizontal wind field at the ground. Based on the structure of the derived 
wind profile, including the existence of a return flow aloft, Jeffreys [40] concluded that 
his theory provided a good first approximation to the sea breeze. In a study of factors con-
trolling the depth of oceanic currents, Stommel and Veronis [73] presented solutions for 
a slab-symmetric scenario similar to that of Jeffrey’s [40] sea breeze example, both with 
and without the Coriolis force (with additional approximations made in the former case), 
and with the no-slip condition used in place of the skin friction condition. A zone of what 
would now be referred to as a crossover layer appears in their Fig. 1. K75 extended the 
Stommel and Veronis [73] framework (version without Coriolis force) to cases where the 
surface temperature varied laterally as a rectangle (top hat) function, representing a heat 
island, and a series of rectangle functions, representing a row of heat islands. Although 
mostly concerned with the slab-symmetric configuration, K75 briefly presented results for 
axisymmetric forcing, with a focus on the temperature field. However, the axisymmetric 
temperature solution did not reduce to the same (rectangle) function at the ground as in the 

Fig. 1  Horizontal (x–y) plots of non-dimensional surface buoyancy functions f in the forms of a Gaussian 
and b parabolic arch functions. Blue lines depict slab-symmetric functions. Red lines depict axisymmetric 
functions
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slab-symmetric case, and actually became singular immediately beyond the outer edge of 
the heat island (K75, footnote on p. 443). In a follow-up study, Kimura [44] extended his 
slab-symmetric heat island analysis to include a constant background wind U. That study 
included a more thorough exploration of a solution originally given in Olfe and Lee [61] 
on viscous effects in urban heat island flows, although the latter also made provision for 
smoothly varying surface temperature distributions, such as a Gaussian function. Olfe and 
Lee [61] also analyzed flows forced by an axisymmetric surface heating, but the viscous 
term in that application was neglected, so their solutions were restricted to infinite Prandtl 
number.

The layout of our paper is as follows. In Sect. 2 we present the governing equations for 
a shallow axisymmetric convective flow over a differentially heated surface for a general 
class of surface buoyancy functions, deduce the scalings for the flow variables, and provide 
a solution framework using Hankel transforms. The corresponding slab-symmetric prob-
lem and its solution in terms of Fourier transforms are described in Sect. 3. In Sect. 4 we 
consider axisymmetric and slab-symmetric flows driven by surface buoyancy functions in 
the form of Gaussian and parabolic arch functions. In Sect. 5 we discuss how the geometry 
of the forcing impacts circulation strength, and describe the implications of the scalings for 
the timing (day vs. night) of peak circulation strength. A summary follows in Sect. 6.

2  Governing equations and solution framework for axisymmetric 
shallow convection flow

Consider the steady flow of a stably stratified fluid induced by an axisymmetrically heated 
lower surface. There is no ambient wind, and the Coriolis force is neglected. We work 
with the linearized Boussinesq governing equations with the turbulent heat and momen-
tum fluxes parameterized using K-theory (eddy viscosity approach). The kinematic eddy 
viscosity ν and thermal eddy diffusivity κ are considered constant, but may differ from one 
another. We write the Reynolds-averaged (mean) governing equations in cylindrical coor-
dinates as

Equation (2.1) is the radial equation of motion, (2.2) is the hydrostatic equation, (2.3) 
is the thermal energy equation, and (2.4) is the incompressibility condition. Here R is the 
radial coordinate, Z is the vertical coordinate (Z = 0 corresponds to the ground), U and W 
are the radial and vertical mean velocity components, respectively, B ≡ g [� − �e(Z)]∕�0 
is mean buoyancy [g is acceleration due to gravity, θ is mean potential temperature, θe is a 
base-state potential temperature profile, considered to vary linearly with Z, θ0 is a constant 

(2.1)0 = −
��

�R
+ �

�2U

�Z2
,

(2.2)0 = −
��

�Z
+ B,

(2.3)0 = −WN2 + �
�2B

�Z2
,

(2.4)1

R

�(RU)

�R
+

�W

�Z
= 0.
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reference value of potential temperature], and � ≡ [p − pe(Z)]∕�0 is the mean kinematic 
pressure perturbation [p is mean pressure, pe is the base-state pressure profile, ρ0 is a con-
stant reference value of density]. The Brunt-Väisälä frequency N ≡ √

(g∕�0) d�e ∕dZ is 
also constant (consistent with linear-in-Z variation of θe). Equations  (2.1) and (2.3) have 
undergone a boundary-layer approximation in which the horizontal stress and diffusion 
terms were neglected. The approximation is based on the presumed smallness of the verti-
cal length scale relative to the lateral length scale, and is justified below.

Taking the vertical derivative of (2.1) and (2.3), and using (2.2) and (2.4) to eliminate Π 
and W from the resulting equations yield the y-component vorticity equation,

(�U∕�Z is boundary-layer approximated vorticity; − �B∕�R is baroclinic term) and

Attention is restricted to surface buoyancies in the form:

where B0 is the peak surface buoyancy and f(R) is a non-dimensional shape function. The 
latter has a peak magnitude of unity at the city center (R = 0), is characterized by a single 
length scale D that quantifies the radial decay rate, and vanishes as R → ∞. We will refer to 
R = D as the city limit.

A vertical length scale H and radial velocity scale U0 can be inferred from scale analy-
ses of (2.5) and (2.6) ( B0∕D ∼ �U0 ∕H

3 and N2U0 ∕D ∼ �B0 ∕H
3 ) as

where Pr ≡ �∕� is the turbulent Prandtl number. Incorporating (2.8) into a scale analysis 
of (2.3) or (2.4) yields the vertical velocity scale W0 as

Apart from notational differences, these length and velocity scales are the same as in the 
Niino et al. [56] analysis of slab-symmetric flows with a step change in buoyancy.

The ratios of the (omitted) horizontal stress and diffusion terms to vertical stress and 
diffusion terms scale as �2 ≡ (H∕D)2= �2∕3∕(D4∕3N2∕3 Pr1∕3) . Upper bounds on α2 for city 
sizes in a D = 1–50 km range, eddy viscosities in a ν = 0.1 − 50m2 s−1 range, Prandtl num-
bers in a Pr = 0.3–10 range, and a Brunt–Väisälä frequency of N = 0.01 s−1 , vary from 
α2 ∼  1 × 10−6 to α2 ∼  4 × 10−2 . Since these values are much less than 1, we are justified in 
neglecting the horizontal stress and diffusion terms in our analysis. Similarly, Niino et al. 
[56] found that for typical atmospheric conditions and Pr = 1, their numerically simulated 
flows (with horizontal stress and diffusion terms retained) were insensitive to the assigned 
value of α.

In terms of the non-dimensional variables

(2.5)0 = −
�B

�R
+ �

�3U

�Z3
,

(2.6)0 =
N2

R

�(RU)

�R
+ �

�3B

�Z3
.

(2.7)B(R, 0) = B0 f (R),

(2.8)U0 =
B0

N Pr1∕2
, H =

�1∕3D1∕3

N1∕3 Pr1∕6
,

(2.9)W0 =
B0 �

1∕3

N4∕3D2∕3 Pr2∕3
.

(2.10)u(r, z) ≡ U

U0

, w(r, z) ≡ W

W0

, b(r, z) ≡ B

B0

, r ≡ R

D
, z ≡ Z

H
,
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equations (2.5) and (2.6) become

Taking �∕�r of (2.12) and using (2.11) to eliminate �b∕�r from the resulting equation 
yields

We solve (2.13) for u using the method of Hankel transforms (e.g., Debnath and Bhatta 
[14]; hereafter DB) and standard results for Bessel functions (e.g., Abramowitz and Stegun 
[1]; hereafter AS). Readers not interested in the solution details for this or the slab-symmetric 
case (Sect. 3) can safely skip to Sect. 4.

The nth order Hankel transform of a function q(r, z) is defined by

where Jn(kr) is a Bessel function of the first kind of order n and k is a constant. The func-
tion q is related to its transform q̂n through the inversion formula

Multiplying (2.13) by r J1(kr) , and integrating the resulting equation with respect to r from 
r = 0 to r = ∞ produces

where � ≡ kr , and we have used d∕d� [� J1(�)] = � J0(�) [(9.1.30) of AS]. Since (i) J1(kr) 
and u vanish as r → 0 and J0(0) = 1, (ii) u, J0(kr) , and J1(kr) vanish as r → ∞ [we assume 
�u∕�r J1(kr) and u J0(kr) vanish faster than 1/r as r → ∞ ], and (iii) d∕d� J0(�) =−J1(�) 
[(9.1.28) of AS], (2.16) reduces to

The general solution of (2.17) is

(2.11)0 = −
�b

�r
+

�3u

�z3
,

(2.12)0 =
1

r

�(ru)

�r
+

�3b

�z3
.

(2.13)
�6u

�z6
+

�

�r

[
1

r

�(ru)

�r

]
= 0.

(2.14)q̂n(k, z) ≡
∞

�
0

q(r, z)rJn(kr)dr,

(2.15)q(r, z) =

∞

∫
0

q̂n(k, z)kJn(kr)dk.

(2.16)
d6û1

dz6
+

[
J1(kr)

𝜕(ru)

𝜕r
− kruJ0(𝜉)

]|||||

∞

0

+ k2

∞

∫
0

ru
d

d𝜉
J0(𝜉) dr = 0,

(2.17)d6û1

dz6
− k2û1 = 0.

(2.18)û1 =

6∑

i= 1

ai e
miz,
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where the constant coefficients ai will be determined by the boundary conditions, and the 
mi are the roots of m6 − k2 = 0:

an asterisk denoting complex conjugation. To prevent an unphysical blow-up of the solu-
tion as z → ∞, we reject the roots with positive real parts, taking

Applying the impermeability condition W(R, 0) = 0 in (2.3) yields d2B∕dZ2 = 0 at Z = 0. 
Evaluating d2∕dZ2 of (2.5) at Z = 0 then yields d5U∕dZ5 = 0 at Z = 0. Applying (2.18) in this 
latter equation (non-dimensionalized) and using (2.19) and (2.20) yields

To relate the coefficients to the surface buoyancy, multiply (2.11) by r J1(kr) , and integrate 
the resulting equation with respect to r, using d∕d� [� J1(�)] = � J0(�) . We obtain (for all z):

Evaluating (2.22) at z = 0 using non-dimensionalized (2.7) gives d3û1 ∕dz3 = −k f̂ 0 at z = 0. 
Applying (2.18) in this result then yields:

Applying the no-slip condition [U(R, 0) = 0, so û1(k, 0) = 0 ] in (2.18) provides

Equations (2.20), (2.21), and (2.24) yield a4, a5, and a6 as

where we have used e±�i∕3 = cos(�∕3) ± i sin(�∕3) = (1 ± i
√
3)∕2 . Since a6 = a∗

5
 and 

m6 = m∗
5
 , we see that a5 em5z + a6 e

m6z = a5 e
m5z + (a5 e

m5z) ∗= 2Re(a5 e
m5z) , and (2.18) 

gives

which simplifies to

Applying this result in (2.22) yields b̂0 as

(2.19)
m1 = k1∕3, m2 = e�i∕3k1∕3, m3 = e−�i∕3k1∕3 = m∗

2
, m4 = −k1∕3 = −m1,

m5 = −e�i∕3k1∕3 = −m2, m6 = −e−�i∕3k1∕3 = −m3 = −m∗
2
= m∗

5
,

(2.20)a1 = 0, a2 = 0, a3 = 0.

(2.21)a4 + e−�i∕3a5 + e�i∕3a6 = 0.

(2.22)d3û1

dz3
+ k b̂0 = 0.

(2.23)a4 − a5 − a6 = f̂ 0.

(2.24)a4 + a5 + a6 = 0.

(2.25)a4 =
1

2
f̂ 0, a5 = −

1

4
√
3

f̂ 0(
√
3 + i), a6 = −

1

4
√
3

f̂ 0(
√
3 − i) = a∗

5
,

(2.26)û1 =
1

2
f̂ 0 exp

�
−k1∕3z

�
−

1

2
√
3
f̂ 0Re

�
(
√
3 + i) exp

�
−e𝜋i∕3k1∕3z

��
,

(2.27)û1 = f̂ 0

�
1

2
e−k

1 ∕ 3z −
1
√
3
e−k

1 ∕ 3z∕2 cos

�√
3

2
k1∕3z −

𝜋

6

��
.

(2.28)b̂0 = f̂ 0

�
1

2
e−k

1 ∕ 3z +
1
√
3
e−k

1 ∕ 3z∕2 cos

�√
3

2
k1∕3z −

𝜋

6

��
.
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Applying b̂0 in ŵ0 = d2b̂0 ∕dz2 [transform of non-dimensionalized (2.3)] yields ŵ0 as

Application of (2.15) to the transformed variables provides the solution:

Integrating the non-dimensional form of (2.2) with respect to z yields the non-dimen-
sional kinematic pressure perturbation p ≡ � ∕(B0H) as p = − ∫ ∞

z
b(r, z�)dz� , or, after use 

of (2.31):

To help visualize the flow, we will plot the Stokes stream function ψ, a function 
whose isolines are streamlines (e.g., Kundu and Cohen [47]). This function satisfies 
u = r−1�� ∕�z and w = − r−1�� ∕�r . Multiplying the latter equation by r J0(kr) and inte-
grating the result gives

Since the ground is impermeable and there are no mass sources along the central axis, ψ 
has the same constant value along the ground and central axis. Without loss of generality, 
we set this constant to zero, and write (2.34) as

where � ≡ � ∕r is a modified Stokes stream function. Equation (2.35) can be recognized as

With ŵ0 obtained from (2.29), we get �̂�1 from (2.36), ϕ from the inverse transform (2.15) 
of �̂�1 , and then ψ = rϕ from

(2.29)ŵ0 = f̂ 0k2∕3

�
1

2
e−k

1 ∕ 3z −
1
√
3
e−k

1 ∕ 3z∕2 cos

�√
3

2
k1∕3z +

𝜋

6

��
.

(2.30)u =

∞

∫
0

kJ1(kr) f̂
0

�
1

2
e−k

1 ∕ 3z −
1
√
3
e−k

1 ∕ 3z∕2 cos

�√
3

2
k1∕3z −

𝜋

6

��
dk,

(2.31)b =

∞

∫
0

kJ0(kr) f̂
0

�
1

2
e−k

1 ∕ 3z +
1
√
3
e−k

1 ∕ 3z∕2 cos

�√
3

2
k1∕3z −

𝜋

6

��
dk,

(2.32)w =

∞

∫
0

k5∕3 J0(kr) f̂
0

�
1

2
e−k

1 ∕ 3z −
1
√
3
e−k

1 ∕ 3z∕2 cos

�√
3

2
k1∕3z +

𝜋

6

��
dk.

(2.33)p = −

∞

∫
0

k2∕3 J0(kr) f̂
0

�
1

2
e−k

1 ∕ 3z +
1
√
3
e−k

1 ∕ 3z∕2 cos

�√
3

2
k1∕3z +

𝜋

6

��
dk.

(2.34)

∞

∫
0

r J0(kr)w dr = −
[
�J0(kr)

]|||
∞

0
− k

∞

∫
0

J1(kr)� dr.

(2.35)

∞

∫
0

r J0(kr)w dr = −k

∞

∫
0

r J1(kr)� dr,

(2.36)ŵ0 = −k �̂�1.
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3  Slab‑symmetric shallow convection flow

We now consider the circulation induced by surface buoyancies that vary only in the Cartesian 
X direction. These flows are two-dimensional in a slab-symmetric sense. With U interpreted 
as the X-velocity component, and D as a lateral (in X) length scale, (2.1)–(2.3) and (2.5) still 
hold, but with X in place of R, while (2.4) and (2.6) apply in modified forms with �U∕�X 
replacing 1∕R �∕�R (RU) . Variables are again non-dimensionalized using (2.8)–(2.10), but 
with the relation for r replaced by x ≡ X∕D . The equation analogous to (2.13) is

We solve (3.1) using the method of Fourier transforms (e.g., DB). The Fourier sine trans-
form q̂s(k, z) and cosine transform q̂c(k, z) of a function q(x, z), and the corresponding inver-
sion formulae are

Multiplying (3.1) by sin(kx) , and integrating the resulting equation with respect to x from 
x = 0 to x = ∞, (considering u to vanish as x → 0 and as x → ∞, and �u∕�x to vanish as x → ∞) 
yields

Since (3.4) is identical to (2.17), the general solutions for ûs and û1 are identical. Since ai in 
the general solution for ûs satisfy (2.20) and (2.21), the relationship (2.24) also applies in the 
slab-symmetric case, and the equation analogous to (2.22) ( d3ûs ∕dz3 + k b̂c = 0 ) yields an 
equation analogous to (2.23) [ a4 − a5 − a6 = f̂ c , where f̂ c ≡∫ ∞

0
f (x) cos(kx) dx ], the particu-

lar solutions for û1 , b̂0 , and ŵ0 carry over with minor notational changes as the particular solu-
tions for ûs , b̂c , and ŵc . Accordingly, the only differences between the axisymmetric and slab-
symmetric solutions arise from generic differences between Hankel and Fourier transforms.

In slab-symmetric flows, isolines of the planar stream function � (same symbol is used for 
planar and Stokes stream functions) coincide with streamlines (e.g., Kundu and Cohen [47]). 
This stream function satisfies u = �� ∕�z and w = − �� ∕�x . Multiplying the latter equation 
by cos(kx) and integrating the result with respect to x yields

(2.37)𝜓 = − r

∞
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dk.
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𝜋
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0
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√

2

𝜋

∞

�
0

q(x, z) cos(kx)dx , q(x, z) =

√
2

𝜋

∞

�
0

q̂c(k, z) cos(kx)dk.

(3.4)d6ûs

dz6
− k2ûs = 0.

(3.5)�̂� s = −
1

k
ŵc.
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By taking the appropriate inverse transforms we are led to the slab-symmetric solutions:

4  Examples

In this section we examine flows induced by surface buoyancies that vary as the Gaussian 
functions f = exp(−R2 ∕D2)= exp(−r2) and f = exp(−X2 ∕D2) = exp(−x2) , and the para-
bolic arch functions f = (1 − r2)H(1 − r) and f = (1 − x2)H(1 − |x|) , where H(χ) is a Heav-
iside unit step function of χ (≡ 0 for χ < 0; ≡ 1 for χ > 0). As seen in Fig. 1, these functions are 
similar near the city center but diverge as the city limit is approached through increasing x 
(r), with the buoyancy gradient gradually decaying in the Gaussian function case but rapidly 
increasing in the parabolic arch function case. We also briefly discuss below the rectangle 
function case considered by K75 and others.

The solutions are evaluated on an analysis grid with a grid spacing of Δx (Δr) = Δz = 0.02. 
The analysis domain is large enough to include the primary in-up-out circulation (circulation 
whose inflowing branch is adjacent to the Earth’s surface), but does not include any of a suc-
cession of progressively (much) weaker overlying circulations that extends to z → ∞.

4.1  Gaussian function

We first examine the Gaussian function cases. The axisymmetric function has the zero order 
Hankel transform (Table B-5 of DB)

and the slab-symmetric function has the Fourier cosine transform (Table B-2 of DB)

(3.6)u =

�
2

𝜋

∞

∫
0

sin(kx) f̂ c

�
1

2
e−k

1 ∕ 3z −
1
√
3
e−k

1 ∕ 3z∕2 cos

�√
3

2
k1∕3z −

𝜋

6

��
dk,

(3.7)b =

�
2

𝜋

∞

∫
0

cos(kx) f̂ c

�
1

2
e−k

1 ∕ 3z +
1
√
3
e−k

1 ∕ 3z∕2 cos

�√
3

2
k1∕3z −

𝜋

6

��
dk,

(3.8)
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�
2
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∞

∫
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1

2
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1
√
3
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�√
3

2
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𝜋

6

��
dk,

(3.9)
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The integrals in (2.30)–(2.33) and (2.37) with f̂ 0 given by (4.1), and (3.6)–(3.10) with 
f̂ c given by (4.2) are evaluated numerically using the trapezoidal rule with a wavenum-
ber increment of Δk = 0.0025 and the upper limit of integration truncated at k = 10. Due 
to the rapid decays of f̂ 0 and f̂ c with k in (4.1) and (4.2), the errors committed with this 
truncation are insignificant. The Bessel functions are evaluated with their ascending series 
representations [(9.1.10) of AS] for kr (kx) ≤ 8 , and their Hankel asymptotic expansions 
[(9.2.5) of AS] for kr (kx) > 8.

The u and w fields for the axisymmetric case are shown in Fig. 2, and the ψ and b fields 
are shown in Fig. 3. The corresponding slab-symmetric fields are shown in Figs. 4 and 5. 
Information about the local extrema in these cases is given in Table 1. Some structural flow 
features are common to both geometries. The flow is dominated by an in-up-out circulation 
in which the peak updraft speed wup is an order of magnitude larger than the peak speed of 

(4.2)f̂ c =

�
2

𝜋

∞

∫
0

e−x
2

cos(kx) dx =
1
√
2
e−k

2∕4.

Fig. 2  Vertical (r − z) plots of a u and b w for flow induced by an axisymmetric Gaussian forcing function. 
All quantities are non-dimensional. Contour increments for u and w are 0.01
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the surrounding downdraft wdown . The inflow branch of the circulation gradually descends 
as x (r) decreases for x (r) > 1, before turning upward in the vicinity of the city limit. The 
downdraft is strongest in the vicinity of x (r) ~ 1.75, in a region of unremarkable buoyancy 
gradient. Crossover layers of negative buoyancy are found along the central axis and in the 
rising portion of the outflowing branch of the circulation, although the peak magnitudes of 
buoyancy in these layers are just a few per cent of the peak surface buoyancy. A number 
of differences related to geometry, however, are also evident. The central updraft is more 
than 40% stronger in the axisymmetric case than in the slab-symmetric case, while the sur-
rounding downdraft (albeit rather weak), is more than 150% stronger in the slab-symmet-
ric case than in the axisymmetric case. The peak inflow and outflow wind speeds, uin and 
uout , are both higher in the slab-symmetric case (~ 35% higher for uin and ~ 28% higher for 
uout ). Within the inflow branch of the circulation, for x (r) > ~ 1.8 in the axisymmetric case 
and x (r) > ~ 1.5 in the slab-symmetric case, there is a slight tendency for the buoyancy to 
increase with height. The effect is more pronounced in the slab-symmetric case, which can 
be attributed to the greater subsidence warming associated with the stronger downdraft in 
that case. Similarly, the larger magnitudes of the negative buoyancies in the crossover layer 

Fig. 3  Vertical (r − z) plots of a ψ and b b for flow induced by an axisymmetric Gaussian forcing function. 
All quantities are non-dimensional. Contour increment for ψ is 0.01. Contour increment for b is 0.02
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(particularly over the city center) in the axisymmetric case can be attributed to adiabatic 
cooling in the stronger updraft.

4.2  Parabolic arch function

Next, we consider the parabolic arch cases. The axisymmetric function f =  (1 − r2)H(1 − r) 
has the zero order Hankel transform (Table B-5 of DB)

For the slab-symmetric case we use Table B-2 of DB to write the Fourier cosine transform 
of f = (1 − x2)�−1∕2H(1 − x) (our particular function corresponds to � = 3∕2 ) as

(4.3)f̂ 0 = ∫
∞

0

(1 − r2)H(1 − r) r J0(kr) dr =
4

k3
J1(k) −

2

k2
J0(k).

(4.4)f̂ c =

√
2

𝜋

∞

∫
0

(1 − x2)𝜇−1∕2H(1 − x) cos(kx) dx = 2𝜇−1∕2𝛤 (𝜇 + 1∕2) k−𝜇J𝜇(k).

Fig. 4  Vertical (x − z) plots of a u and b w for flow induced by a slab-symmetric Gaussian forcing function. 
All quantities are non-dimensional. Contour increments for u and w are 0.01



124 Environmental Fluid Mechanics (2019) 19:111–135

1 3

Setting � = 3∕2 in (4.4) and noting that J3∕2(k) =
√
2k∕� (sin k∕k2 − cos k∕k) [using 

(10.1.1) and (10.1.11) of AS], we obtain the transform as

We again evaluate the solution integrals using the trapezoidal rule with a wavenum-
ber increment of Δk = 0.0025, and appropriate series and asymptotic representations for 
the Bessel functions. However, because of the relatively slow decays of f̂ 0 and f̂ c with 
k [compare (4.3) and (4.5) to (4.1) and (4.2)], it was necessary to truncate the integrals 
at a much higher value of k. A cutoff value of k ~ 1300 was deemed sufficiently large as 
further increases produced no discernable changes to the solution.

Results obtained with parabolic arch forcing in axisymmetric geometry are shown in 
Figs. 6 and 7, and in slab-symmetric geometry in Figs. 8 and 9. Overall, the main flow 
structures arising from parabolic arch forcing are similar to those arising from Gaussian 
forcing for both axisymmetric and slab-symmetric geometries. An important difference, 

(4.5)f̂ c = 2

√
2

𝜋

(
sin k

k3
−

cos k

k2

)
.

Fig. 5  Vertical (x − z) plots of a ψ and b b for flow induced by a slab-symmetric Gaussian forcing function. 
All quantities are non-dimensional. Contour increment for ψ is 0.01. Contour increment for b is 0.02
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however, is that in the parabolic arch forcing cases, the peak downdraft in both geom-
etries is much more intense and its location is shifted inward (now over the city limit) 
and downward. This downdraft is found in association with an intense baroclinic zone. 
As in the Gaussian cases, the axisymmetric updraft is stronger than the slab-symmetric 
updraft, while the downdraft and the inflow/outflow branches of the slab-symmetric cir-
culation are stronger than in the axisymmetric circulation.

4.3  Rectangle function

A particularly simple surface buoyancy function—the rectangle function f = H(1 − |x |) or 
its axisymmetric equivalent—has been used in idealized numerical [15, 21, 43, 45, 57] and 
laboratory [43, 45, 51, 52, 56] simulations of oceanic and urban heat islands. K75 presented a 
linear analytical solution for the perturbation temperature and wind field for this case but did 
not graph the latter. We briefly comment on that wind field. The Fourier cosine transform of 
f = H(1 − |x |) is given in Table B-2 of DB as

In this case, progressively increasing the upper limit of integration in the truncated form of 
(3.6) decreased the height of the wind maximum to the point where it eventually reached the 
first grid point above the ground, just over the buoyancy discontinuity. We conjectured that the 
analytical solution might actually describe a wind maximum adjacent to the ground, which 
would be associated with infinite shear. This was confirmed by setting z = 0 and x = 1 in the 

(4.6)f̂ c =

√
2

𝜋

∞

∫
0

H(1 − x) cos(kx) dx =

√
2

𝜋

sin k

k
.

Table 1  Characteristics of UHICs in axisymmetric and slab-symmetric geometries

In all cases the updraft is strongest on the central axis, x (r) = 0. The peak values of w in the updraft and 
downdraft are denoted by wup (> 0) and wdown (< 0), respectively. The peak values of u in the inflow and 
outflow branches of the circulation are denoted by uin (< 0) and uout (> 0), respectively. The height of the 
peak inflow is zin; analogous notation is used for the locations of other extrema. The height of the crossover 
point (height of zero buoyancy) on the central axis is zcross . All quantities are non-dimensional

Axisymmetric 
Gaussian

Slab-symmetric 
Gaussian

Axisymmetric para-
bolic arch

Slab-symmetric 
parabolic arch

wup 0.276 0.191 0.316 0.219
zup 1.62 1.78 1.60 1.76
wdown − 0.020 − 0.051 − 0.152 − 0.187
zdown 1.38 1.54 0.64 0.78
xdown (rdown) 1.78 1.60 1.00 1.00
uin − 0.069 − 0.094 − 0.088 − 0.116
zin 0.60 0.70 0.54 0.60
xin (rin) 0.84 0.94 0.78 0.82
uout 0.038 0.049 0.048 0.057
zout 2.88 3.30 2.54 2.88
xout (rout) 0.86 0.98 0.72 0.74
zcross 2.48 3.58 2.26 3.18
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vertical derivative of (3.6), and using the fact that ∫ ∞

0
k−2∕3 cos(2k)dk is finite [(858.813) of 

Dwight [18] ] while ∫ ∞

0
k−2∕3dk = 3k1∕3||

∞

0
 is infinite:

To avoid such singular behavior, we have specifically worked with continuous surface 
buoyancy distributions (i.e., Gaussian and parabolic arch functions). We note that prior 
to the K75 study, Vukovich [80] had suggested that the strong winds produced by some 
idealized heat island models were due to the near-infinite lateral temperature gradients in 
those models, but that realistic urban heat islands away from bodies of water should have 
smoothly varying temperature fields.

(4.7)
�u

�z

||||x= 1
z= 0

=
1

�

∞

∫
0

sin2 k

k2∕3
dk =

1

2�

∞

∫
0

1 − cos(2k)

k2∕3
dk = ∞.

Fig. 6  As in Fig. 2, but for u and w in flow induced by an axisymmetric parabolic arch forcing function
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5  Discussion

5.1  Impact of forcing geometry on circulation strength

Our study shows that flow geometry has different impacts on the different branches of the 
UHIC. For both Gaussian and parabolic arch function forcings, the updraft is stronger in 
the axisymmetric case, while the downdraft and horizontal branches of the circulation 
are stronger in the slab-symmetric case. Similar results for the vertical velocity field are 
obtained in a modeling study of cumulus clouds by Soong and Ogura [72]: the simulated 
updraft is stronger in the axisymmetric model than in the slab-symmetric model, and the 
ratio of the peak downdraft speed to peak updraft speed is much greater in the slab-sym-
metric model. In explaining these results, Soong and Ogura [72] noted that the (downward) 
vertical perturbation pressure gradient force (PPGF) in the core region of the simulated 
clouds opposed the buoyancy forcing, and that the effect was much larger in the slab-
symmetric model. Similarly, in an analytical study of cumulus convection, Yau [83] found 
that the PPGF opposing the cloud buoyancy forcing was almost twice as large in the slab-
symmetric case than in the axisymmetric case. In a study of dry thermal convection, Ram-
baldi and Randall [65] found that axisymmetric thermals rose faster than slab-symmetric 

Fig. 7  As in Fig. 3, but for ψ and b in flow induced by an axisymmetric parabolic arch forcing function
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thermals because the former could push through its environment more easily—the envi-
ronmental air could be displaced in two dimensions in the axisymmetric case but only 
one dimension in the slab-symmetric case. Similarly, in a study of dry ellipsoidal thermal 
bubbles, Shapiro and Kanak [67] found that buoyant elements with a fixed vertical length 
scale developed a stronger downward-directed vertical PPGF (i.e., one that opposed the 
buoyancy) for larger horizontal length scales. This indicated that the environment offered 
greater resistance to buoyant ascent for wider (more laterally extensive) bubbles.

In the present study we can infer from the spacing of isolines of the perturbation pres-
sure field π (shown in Fig. 10 for the Gaussian functions) that there is a stronger downward-
directed vertical PPGF −��∕�z in the slab-symmetric case than in the axisymmetric case for 
all x (r) in a deep layer (~ 1 < z < ~ 2.5) that contains the updraft and downdraft speed maxima. 
This downward-directed force weakens the updraft but strengthens the downdraft. Addition-
ally, we can infer from Fig. 10 that the stronger horizontal PPGF, evident at most locations in 
the slab-symmetric case, strengthens the inflow at low levels and the outflow at upper levels.

Fig. 8  As in Fig. 4, but for u and w in flow induced by a slab-symmetric parabolic arch forcing function



129Environmental Fluid Mechanics (2019) 19:111–135 

1 3

5.2  Implications of the scalings for the timing of the peak circulation strength

We now examine how the strength of the circulation is affected by the scalings (2.7)-(2.9) (and 
slab-symmetric equivalents). As we have seen, use of these scalings to non-dimensionalize 
variables has yielded a problem with no external parameters, and solutions that are universal 
[also noted by Niino et al. [56] for the linearized version of their problem]. In view of these 
scalings, the dimensional peak inflow speed Uin, peak updraft speed Wup , and height of peak 
updraft Zup can be written as

(5.1)Uin = U0 uin =
B0

N Pr1∕2
uin,

(5.2)Zup = Hzup =
�1∕3D1∕3

N1∕3 Pr1∕6
zup,

(5.3)Wup = W0wup =
B0 �

1∕3

N4∕3D2∕3 Pr2∕3
wup,

Fig. 9  As in Fig. 5, but for ψ and b in flow induced by a slab-symmetric parabolic arch forcing function
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with analogous equations for the peak outflow speed Uout , height of the peak downdraft 
Zdown , and peak downdraft speed Wdown . Not surprisingly, an increasing stable stratifica-
tion (quantified by larger N), by itself, weakens the updraft/downdraft and the inflow/out-
flow currents. Similarly, a decreasing urban–rural temperature contrast (quantified through 
smaller B0), by itself, also weakens the overall circulation.

Typical day-to-night changes in the turbulence characteristics of the boundary layer can 
have a large impact on the velocity and vertical length scales in (2.8) and (2.9) [(5.1)–(5.3)], 
and may provide insight into the tendency, noted in Sect. 1, for some UHICs to be stronger 
during the day, despite the urban–rural temperature contrasts being larger at night. During 
the day, under conditions of vigorous dry convective mixing, ν can range from ∼ 10 m2 s−1 
to ∼ 100m2 s−1 [13, 76, 82], while Pr is generally less than 1 and can be as low as ~ 0.3 in a 
very unstable regime3 [10, 32, 79]. In contrast, in stable conditions, ν typically ranges from 

Fig. 10  Vertical plots of the kinematic perturbation pressure p for flows induced by Gaussian forcing func-
tions in a axisymmetric and b slab-symmetric configurations. All quantities are non-dimensional. Contour 
increment is 0.025

3 Of course, for � to be large during the day while Pr is small (less than 1), the daytime thermal diffusivity κ 
must be very large (i.e., exceed the value of �).
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∼ 0.01 m2 s−1 to ∼ 1 m2 s−1 [13, 53, 68, 82], while Pr can vary from near 1 to over 100 [37, 
46, 48, 79]. From (2.8) and (2.9) we see that the smaller value of Pr (e.g., Pr = 0.3) during 
the day would, by itself, tend to increase U0, H, and W0 over their nighttime values, thus 
compensating for the smaller daytime B0. This daytime Prandtl number effect is the strong-
est for the W0 scale. We also see that a much larger daytime value of ν, by itself, results in 
larger daytime values of H and W0 . However, this daytime eddy viscosity effect does not 
extend to U0 . The reason W0 receives the overall largest increases can be understood from 
the relation W0 = U0H∕D (consistent with the scaled incompressibility condition), which 
indicates that W0 accrues the gains obtained by H and U0. However, since there is no day-
time eddy viscosity effect on U0, only Prandtl number effects can explain a daytime maxi-
mum in U0, at least within the framework of our theory. Examples of UHICs forced by a 
slab-symmetric Gaussian surface buoyancy function are shown in Table 2. There we see 
cases where the updraft and inflow current are strongest at night (D1 vs. N1) or strongest 
during the day (D2 and D3 vs. N2). We also see cases where the updraft is strongest during 
the day but the inflow is strongest at night (D1 vs. N2, D2 and D3 vs. N1).

6  Summary and conclusion

We have revisited a linearized model of steady shallow convective flow of a viscous sta-
bly stratified fluid over a differentially heated lower boundary without Coriolis force or 
background wind, a problem of relevance to heat island circulations (urban or oceanic) 
considered by K75 and others. Solutions of the linearized coupled equations of motion 
and thermal energy were obtained for surface buoyancy functions that varied as Gaussian 
and parabolic arch functions. The flows were modeled in axisymmetric and slab-symmetric 
frameworks.

In all cases the dominant flow is an in-up-out circulation. The updraft is strongest along 
the axis of symmetry. The surrounding downdraft is much weaker than the updraft in the 
Gaussian function forced cases, but becomes almost as strong as the updraft in the para-
bolic arch function forcing cases. In all cases a crossover layer of weak negative buoyan-
cies is present at upper levels along the central axis and in the rising outflow branch of the 
circulation.

Table 2  Sensitivity of a UHIC to surface buoyancy and mixing parameters

The UHIC is forced by a slab-symmetric Gaussian surface buoyancy function. The peak inflow speed Uin , 
height of peak updraft Zup , and peak updraft speed Wup are calculated from (5.1)–(5.3) with parameters: 
N = 0.01 s−1 , D = 20 km , B0= 0.06 m s−2 (day) and 0.2 m s−2 (night), corresponding to urban–rural tem-
perature contrasts of ~ 1.8  K and ~ 6  K, respectively, uin = −0.094 , zup = 1.78 , and wup = 0.191 (from 
Table 1), and ν and Pr as indicated in the Table above

B0

(m s−2)
ν (m2 s−1) Pr H (m) U0

(m s−1)
W0

(m s−1)
Zup

(m)
Uin

(m s−1)
Wup

(m s−1)

Night N1 0.2 1 1 126 20.0 0.126 224 − 1.88 0.024
Night N2 0.2 1 10 86 6.3 0.027 153 − 0.59 0.005
Day D1 0.06 10 1 271 6.0 0.081 482 − 0.56 0.016
Day D2 0.06 10 0.3 332 11.0 0.181 591 − 1.03 0.035
Day D3 0.06 50 0.3 567 11.0 0.311 1009 − 1.03 0.059
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For both Gaussian and parabolic arch function forcings, the central updraft is stronger 
in the axisymmetric case, while the surrounding downdraft and horizontal branches of the 
circulation are stronger in the slab-symmetric case. These features arise from the increased 
magnitude of the PPGF that develops in the slab-symmetric geometry: the downward-
directed vertical component of the PPGF in a layer with the peak updraft and downdraft 
intensities, the inward-directed lateral component of the horizontal PPGF in the inflow 
layer, and the outward-directed lateral component of the horizontal PPGF in the outflow 
layer are all stronger in the slab-symmetric geometry.

The power-law scalings deduced in our analysis may explain why the daytime UHIC 
can be stronger than the nighttime UHIC despite the relative weakness of urban–rural tem-
perature contrasts during the daytime. A smaller daytime turbulent Prandtl number (con-
sistent with smaller Pr observed in very unstable regimes, e.g., Pr = 0.3) would, by itself, 
force a more vigorous updraft and inflow current than would occur at night with a larger 
Prandtl number more representative of a neutral or stable regime. Additionally, a larger 
value of eddy viscosity during the day would, by itself, force a more intense updraft during 
the day. The intensities of UHICs were evaluated for surface buoyancy and turbulent mix-
ing parameters characteristic of daytime and nighttime conditions. Examples were given 
of circulations that were strongest during the day and strongest during the night. Addition-
ally, circulation cases were found in which the updraft was strongest during the day but the 
inflow was strongest at night. The sensitivity of our simple model solutions seen in these 
results suggests that the detailed turbulence characteristics of flows in the urban setting 
may play an important and potentially complex role in determining the overall strength 
of UHICs and the relative strengths of the horizontal and vertical velocities within those 
circulations.
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