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Two alternative depth scales have been proposed for the case of a stably stratified
boundary layer (SBL) where static stability is due to the surface buoyancy flux Bs.
Kitaigorodskii in 1960 assumed that the Earth’s rotation is no longer important as
static stability becomes strong and that the SBL depth scales with the Obukhov length
L = −u3∗/Bs, u∗ being the surface-friction velocity. Zilitinkevich in 1972 proposed

an alternative scale,
(
u∗L/|f |)1/2

, which depends on the Coriolis parameter f no
matter how strong the static stability. Similarly, two alternative depth scales have
been proposed for the case of a SBL dominated by static stability at its outer edge
with buoyancy frequency N. The depth scale u∗/N introduced by Kitaigorodskii
and Joffre in 1988 does not depend on the Coriolis parameter, whereas the Pollard,
Rhines and Thompson scale u∗/|Nf |1/2 introduced in 1973 does.

In the present article, the above formulations for the SBL depth are shown to
be consistent with the budgets of momentum and of turbulence kinetic energy in
the SBL. Furthermore, it is demonstrated that in the case of sufficiently strong
static stability the alternative depth-scale formulations represent particular cases of
more general power-law expressions. For a SBL dominated by the surface buoyancy
flux, the generalized depth scale is given by L(|f |L/u∗)−γ . For a SBL dominated by
outer-edge static stability, the generalized scale is (u∗/N)(|f |/N)−δ. The exponents
γ and δ lie in the range from 0 to 1/2. With γ = 1/2 and δ = 1/2, these expressions
yield the Zilitinkevich scale and the Pollard et al. scale, respectively. In the limits
γ = 0 and δ = 0, the SBL depth scales cease to depend on the Coriolis parameter
in their explicit form and the formulations proposed by Kitaigorodskii and by
Kitaigorodskii and Joffre, respectively, are recovered.

Simple dimensionality arguments are not sufficient to determine γ and δ. To
do this would require an exact solution to equations governing the structure
of mean fields and turbulence in the SBL. Since such a solution is not known,
the exponents should be evaluated from experimental data. Available data from
observations and from large-eddy simulations are uncertain. They do not make it
possible to evaluate γ and δ to adequate accuracy and to decide conclusively between
the alternative formulations for the SBL depth. As regards practical applications,
previously proposed multi-limit formulations based on the above depth scales with
γ and δ in the range from 0 to 1/2 are expected to give similar results for stability
conditions typical of the atmospheric and oceanic SBLs, provided the disposable
dimensionless coefficients in the multi-limit formulations are appropriately tuned.
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1. Introduction

A stably stratified boundary layer (SBL) is a matter of keen
interest in geophysical fluid dynamics. Although a lot of
studies have been devoted to the SBL, there are still many
controversial issues that need to be discussed further and
eventually resolved. One such issue is the equilibrium SBL
depth, that is the depth in a quasi-steady state to which the
SBL evolves in response to external forcing. In the present
article, this issue is reconsidered with an emphasis on the
effect of the Earth’s rotation on the equilibrium depth of a
stably stratified barotropic boundary layer.

It should be stressed that the discussion in the present
article is limited to the depth-scale formulations for a quasi-
steady-state barotropic SBL. Other aspects of the real-world
SBL, such as the effect of the horizontal components of the
angular velocity of the Earth’s rotation and the Ekman-layer
rectification phenomenon (Zikanov et al., 2003; McWilliams
and Huckle, 2006; McWilliams et al., 2009), although very
important, are beyond the scope of the present study.
However, even highly idealized SBL archetypes, such as a
barotropic quasi-steady-state SBL, are of great significance.
Apart from their academic utility, they are widely used in
applications. For example, the equilibrium SBL depth is one
of the key parameters in pollution dispersion studies.

A number of formulations for the equilibrium SBL
depth h have been proposed to date (see discussions
in Zilitinkevich and Mironov, 1996, hereafter ZM96;
Zilitinkevich et al., 2002, hereafter ZBRSLC02; Zilitinkevich
and Esau, 2003; Hess, 2004; Zilitinkevich et al., 2007). The
major formulations are summarized in Table I, where u∗ is
the surface friction velocity, Bs is the surface buoyancy flux,
f is the Coriolis parameter, N is the buoyancy frequency at
the SBL outer edge and L = −u3∗/Bs is the Obukhov (1946)
length scale (we omit the von Kármán constant κ from the
expression for L).

As seen from Table I, there are two alternative depth
scales for an SBL dominated by a stabilizing surface
buoyancy flux. Kitaigorodskii (1960) held the viewpoint
that in the case of strong static stability the Earth’s rotation
is no longer important and the SBL depth scales with
the Obukhov length. Zilitinkevich (1972) proposed an
alternative formulation, where the SBL depth depends on the
Coriolis parameter no matter how strong the static stability.
Similarly, the Kitaigorodskii and Joffre (1988) depth scale
for an SBL affected by static stability at its outer edge (we will
also refer to such an SBL as the imposed-stability-dominated
SBL) does not depend on the Coriolis parameter, whereas
the Pollard et al. (1973) depth scale does.

The results from earlier studies were summarized by
ZM96, who concluded that the Rossby and Montgomery
(1935), Kitaigorodskii (1960) and Kitaigorodskii and Joffre
(1988) scales hold in the limiting cases of a truly neutral
rotating boundary layer, a surface-flux-dominated SBL
and an imposed-stability-dominated SBL, respectively. The
Zilitinkevich (1972) and Pollard et al. (1973) scales were
found to describe the intermediate regimes, where the effects
of rotation and stratification are roughly equally important.
A multi-limit SBL-depth formulation was proposed in ZM96
that accounts for the combined effects of rotation, surface
buoyancy flux and static stability at the SBL outer edge. It

reads

(
h|f |

Cnu∗

)2

+ h

CsL
+ hN

Ciu∗

+ h|f |1/2

Csr(u∗L)1/2
+ h|Nf |1/2

Ciru∗
= 1, (1)

where Cn, Cs, Ci, Csr and Cir are dimensionless constants (we
use the original ZM96 notation). Equation (1) shows that h
ceases to depend on f in the case of strong static stability,
i.e. when L or/and u∗/N is small compared with u∗/|f |. A
simplified version of Eq. (1) that does not incorporate the
intermediate scales, represented by the last two terms on
the left-hand side (l.h.s.), was favourably tested against data
from large-eddy simulations (LES) and from measurements
in the atmospheric and benthic SBLs.

The problem of the equilibrium SBL depth was
reconsidered by ZBRSLC02. They concluded that the
appropriate depth scales for boundary layers dominated by
the surface buoyancy flux and by static stability at the outer
edge of the boundary layer are the Zilitinkevich (1972) scale
and the Pollard et al. (1973) scale, respectively, and proposed
the following multi-limit formulation for the equilibrium
SBL depth:

(
h|f |

CRu∗

)2

+ h2|f |
C2

Su∗L
+ CuN h2N|f |

C2
Su2∗

= 1, (2)

where CR, CS and CuN are dimensionless constants (the
original ZBRSLC02 notation is retained). Equation (2),
which was favourably tested against observational and LES
data in ZBRSLC02, shows that h depends on f no matter
how strong the static stability.

Worthy of mention is the depth scale u2∗/ |BsN|1/2

obtained by McWilliams et al. (2009) by considering the
oceanic SBL affected by both the surface buoyancy flux and
the stable density stratification beneath the boundary layer.
However, as the authors of op. cit. state, this scale ‘seems
unlikely to be a physically common or important regime
except in extreme conditions of heating and stratification’.

In the subsequent text, we examine the alternative
formulations for the SBL depth given in Table I from
the standpoint of their consistency with the budgets of
turbulence kinetic energy (TKE) and of momentum in
the boundary layer (sections 2 and 3, respectively). We
demonstrate (section 4) that the alternative formulations can
all be derived on the basis of TKE-budget and momentum-
budget considerations, although different assumptions
should be made on the way. In section 5, we propose
generalized power-law formulations that incorporate the
alternative SBL depth scales as particular cases. Then (section
6) we test Eq. (1) (more specifically, its reduced form without
the last two terms on the l.h.s.) and Eq. (2) against numerical
and observational data. Results of the study are summarized
in section 7.

2. Turbulence kinetic energy budget considerations

The steady-state TKE balance equation is

−(τx∂u/∂z + τy∂v/∂z) + B − ∂F/∂z − ε = 0, (3)

where z is height, u and v are the velocity components along
the x and y horizontal axes, respectively, τx and τy are the x

Copyright c© 2010 Royal Meteorological Society Q. J. R. Meteorol. Soc. 136: 1473–1480 (2010)



Effect of Rotation on the SBL Depth 1475

Table I. The equilibrium boundary-layer depth scales.

Truly neutral boundary layer u∗/|f |
(Rossby and Montgomery, 1935)

Surface-flux-dominated SBL −u3∗/Bs = L u2∗/|Bsf |1/2 = (
u∗L/|f |)1/2

(Kitaigorodskii, 1960) (Zilitinkevich, 1972)

Imposed-stability-dominated SBL u∗/N u∗/|Nf |1/2

(Kitaigorodskii (Pollard, Rhines
and Joffre, 1988) and Thompson, 1973)

and y components of the kinematic turbulent momentum
flux, B is the vertical buoyancy flux, F is the vertical TKE
flux due to the third-order velocity correlation and the
velocity-pressure correlation and ε is the TKE dissipation
rate.

Integrating Eq. (3) over the boundary layer, we obtain

u2
∗Ug +

∫ h

0
B dz − Fh −

∫ h

0
ε dz = 0, (4)

where Ug is the geostrophic wind component along the
x-axis and Fh is the energy flux at the boundary-layer outer
edge z = h. The first term on the l.h.s. of Eq. (4), which
represents the integral shear production of TKE, is obtained
using the steady-state momentum balance, see Eqs (7) and
(8) below, subject to no-slip boundary condition at the
surface and the conditions u = Ug and v = Vg at the SBL
top (Vg being the geostrophic wind component along the
y-axis), taking the x-axis aligned with the surface stress
and assuming that the stress at the SBL top is negligible
(see Zilitinkevich, 1989, and ZM96). The energy flux Fh is
due to internal gravity waves that transfer energy from the
boundary layer to the stably stratified fluid aloft. The energy
flux at the surface z = 0 is neglected. Its inclusion presents
no principal difficulties, but is not necessary in the present
context as the end result remains unchanged (see discussion
in ZM96).

The similarity arguments suggest that the expression for
the integral TKE dissipation should incorporate terms whose
functional form is the same as that of the shear production
and the buoyancy destruction terms in the TKE budget,
which are the first and the second terms on the l.h.s. of
Eq. (4), respectively. Then

∫ h
0 ε dz ∝ u2∗Ug + ∫ h

0 B dz. Such
a linear model of the integral dissipation is obviously a
simplification. However, it includes the main terms in
question (ZM96). With this estimate of the integral TKE
dissipation, the principal balance in Eq. (4) appears to be the
balance between the TKE shear production and its buoyancy
destruction.

Notice a close analogy between modelling TKE dissipation
and modelling pressure terms in the second-moment
equations. For example, a widely used linear model for
the rapid part of the pressure-gradient-scalar covariance
in the scalar-flux equation includes the terms proportional
to the mean-shear, buoyancy and Coriolis terms in that
equation (see e.g. Zeman, 1981; Mironov, 2001).

Consider first the surface-flux-dominated SBL with
N = 0. Then Fh = 0 and the integral buoyancy destruction

of TKE,
∫ h

0 B dz, scales with hBs = −u3∗(h/L) (see discussion
in ZBRSLC02). The buoyancy destruction is equal to

(1/2)hBs if the vertical buoyancy flux is a linear function of
z, which is a good approximation for the boundary layer in
a quasi-steady state (Nieuwstadt, 1984). Using this estimate,
we obtain

h/L ∝ Ug/u∗. (5)

In the imposed-stability-dominated SBL, the integral
buoyancy destruction of TKE scales with −u2∗hN (see
ZM96). With this estimate, we obtain

hN/u∗ ∝ Ug/u∗. (6)

Notice that the energy flux Fh in the imposed-stability-
dominated SBL may not be equal to zero. Its consideration
does not change the above scaling estimate, however.
As shown by Zilitinkevich (2002) and Soomere and
Zilitinkevich (2002), Fh scales with u2∗hN , that is in the
same way as the integral buoyancy destruction.

As Eqs (5) and (6) suggest, an estimate of Ug/u∗ is required
in order to obtain an expression for h. To this end, one needs
to consider the SBL momentum budget and to derive the
so-called resistance law that relates the geostrophic velocity
components to the components of the surface momentum
flux.

3. Momentum budget considerations

For a steady-state SBL, the momentum balance equations
are

−∂τx/∂z + f (v − Vg) = 0, (7)

−∂τy/∂z − f (u − Ug) = 0, (8)

where Ug = − (
ρf

)−1
∂Ps/∂y and Vg = (

ρf
)−1

∂Ps/∂x are
the geostrophic velocity components along the x and y axes
(Ug and Vg are depth-constant, as the barotropic SBL case
is considered), ρ is the density (within the framework of the
Boussinesq approximation, a constant density is used in the
expressions for Ug and Vg) and Ps is the surface pressure.
The momentum-flux components are taken to be related to
the mean velocity components through the down-gradient
approximation as τx = −Km∂u/∂z and τy = −Km∂v/∂z,
with Km being the kinematic eddy viscosity.

Examine the simplest case of a constant eddy viscosity
Km = K∗. The problem is conveniently considered in
complex notation using a frame of reference with the x-axis
aligned with the surface stress. Recasting the momentum
Eqs (7) and (8) in terms of the dimensionless kinematic
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momentum flux τ̂ = (τx + iτy)/u2∗ and the dimensionless
height ẑ = z/hE, where

hE = (
2K∗/|f |

)1/2
(9)

is the Ekman depth scale (Ekman 1905), we obtain

∂2τ̂ /∂ ẑ2 − 2i sign(f )τ̂ = 0. (10)

The boundary condition at the surface becomes

τ̂ = −1 at ẑ = 0. (11)

The boundary condition at the SBL top reads

τ̂ = 0 at ẑ = h/hE. (12)

The solution to Eq. (10) subject to boundary conditions (11)
and (12) is

τ̂ = sinh
{

[1 + i sign(f )](ẑ − h/hE)
}

sinh
{

[1 + i sign(f )]h/hE
} .

The velocity profile is then found from this solution and the
no-slip condition at the surface as

u(z) + iv(z)

u∗
= −u∗hE

K∗

∫ ẑ

0
τ̂ (ẑ′) dẑ′. (13)

Taking Eq. (13) at ẑ = h/hE where the velocity components
are equal to the geostrophic velocity components yields the
resistance law,

Ug + iVg

u∗
= u∗(

2K∗|f |
)1/2

× cosh
{

[1 + i sign(f )]h/hE
} − 1

sinh
{

[1 + i sign(f )]h/hE
} [

1 − i sign(f )
]
. (14)

Equation (14) serves to determine Ug/u∗. Then Eqs (5)
and (6) yield expressions for the depth of the surface-
flux-dominated SBL and imposed-stability-dominated SBL,
respectively. Notice, however, that the right-hand side
(r.h.s.) of Eq. (14) depends on the yet undetermined
dimensionless parameter h/hE, the ratio of the boundary-
layer depth to the Ekman depth scale defined through
Eq. (9). An assumption about this ratio is required to close
the problem. In the next section, we show how different
assumptions about h/hE lead to different formulations for
the SBL depth.

One comment is in order concerning the expression for
the integral shear production of TKE, u2∗Ug, which follows
from Eq. (14). As a consequence of the use of constant
eddy viscosity all the way through the boundary layer, the
expression for u2∗Ug does not contain a (u3∗/κ) ln(h/z0)
term, z0 being the surface aerodynamic roughness. This
term would appear in the expression for u2∗Ug by virtue of
the surface-layer similarity, which states that in the vicinity
of the surface (more specifically, at z/ min(h, L) � 1) the
(negative of) momentum flux is approximately equal to u2∗
and the velocity gradient behaves as u∗/ (κz). However, the
(u3∗/κ) ln(h/z0) term that enters the TKE budget through
the integral shear production is exactly cancelled by the term
of opposite sign that enters the budget through the integral
dissipation. Indeed, close to the surface the TKE dissipation
behaves, to leading order, as u3∗/ (κz). The integration of this
expression over the boundary layer gives (u3∗/κ) ln(h/z0).
Hence, the term with ln(h/z0) is not present in the final
expressions for h (cf. ZM96).

4. Alternative formulations for the SBL depth revisited

Now we show that the Zilitinkevich (1972) and Pollard
et al. (1973) scales on the one hand, and the Kitaigorodskii
(1960) and Kitaigorodskii and Joffre (1988) scales on the
other hand, follow from the consideration of the TKE and
momentum budgets, depending upon which assumption
is made about the ratio h/hE of the SBL depth to the
Ekman depth. Recall that the four SBL depth scales in
Table I hold when the static stability due to the surface
buoyancy flux or due to the stable density stratification
at the boundary-layer outer edge is sufficiently strong.
This property is expressed quantitatively in terms of the
dimensionless stability parameters appropriate for the two
SBL regimes as follows:

L|f |/u∗ � 1, |f |/N � 1. (15)

Putting it differently, L or u∗/N , respectively, should be
small compared with the Rossby and Montgomery (1935)
scale u∗/|f | pertinent to the truly neutral boundary layer.
In fact, Eq. (15) specifies the limits of applicability of the
expressions for the SBL depth. It states that they are valid
asymptotically as the stability is strong. In order to cover the
entire range of stability conditions, from strongly stable to
truly neutral, an interpolation formula is required that turns
into h ∝ u∗/|f | as Bs and N tend to zero.

(a) Assume that h is of the order of hE. Equation (14) yields

Ug/u∗ ∝ u∗/
(
K∗|f |

)1/2
. Eliminating Ug/u∗ from this

expression, from the expression h ∝ (
K∗/|f |

)1/2
that

holds by virtue of the assumption about h/hE and
from Eq. (5), then solving for K∗ and h, we obtain

K∗ ∝ u∗L and h ∝ (
u∗L/|f |)1/2

. The last expression
is recognized as the Zilitinkevich (1972) formulation
for the depth of the surface-flux-dominated SBL.
Actually, it is the very assumption that h/hE =
constant that makes it possible to arrive at this
estimate. Using Eq. (6) in lieu of Eq. (5), we obtain
K∗ ∝ u2∗/N and h ∝ u∗/|Nf |1/2. The latter expression
is recognized as the Pollard et al. (1973) formulation
for the depth of the imposed-stability-dominated SBL.
Again, it is the assumption that h/hE = constant that
enables one to obtain this result.

(b) Assume, as distinct from (a), that h � hE. Expanding
the r.h.s. of Eq. (14) into a power series in h/hE

and keeping only the leading-order term, we obtain
Ug/u∗ ∝ hu∗/K∗. This expression, along with Eq. (5),
yields an estimate of the eddy viscosity, K∗ ∝ u∗L,

and the inequality (h/L)
(
L|f |/u∗

)1/2 � 1 that serves
to determine h. Since the dimensionless parameter
L|f |/u∗ is small compared with 1, as stated by Eq. (15),
the inequality may be satisfied in many different
ways including h/L = constant. This expression is
recognized as the Kitaigorodskii (1960) formulation
for the depth of the surface-flux-dominated SBL.
Using Eq. (6) in lieu of Eq. (5), we obtain K∗ ∝
u2∗/N and (hN/u∗)

(|f |/N
)1/2 � 1. Given the second

member of Eq. (15), the last inequality may be satisfied
in many different ways including hN/u∗ = constant.
This expression is recognized as the Kitaigorodskii
and Joffre (1988) formulation for the depth of the
imposed-stability-dominated SBL.
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Thus, both sets of alternative SBL-depth formulations,
namely the formulations that include f and the formulations
that do not, prove to be consistent with the TKE-
budget and momentum-budget considerations. However,
the assumptions invoked to derive these formulations are
different. A critical issue is the assumed (postulated) ratio
h/hE of the SBL depth to the Ekman depth. Taking
h/hE = constant (assumption (a)) produces SBL-depth
expressions that incorporate the Coriolis parameter however
strong the static stability might be. Taking h/hE � 1
(assumption (b)) may eliminate the Coriolis parameter
from the expressions for the equilibrium SBL depth. In view
of an approximate character of the theory, it seems difficult
to give preference to (a) over (b), or vice versa. Hence,

the scales
(
u∗L/|f |)1/2

and L for the surface-flux-dominated
SBL and u∗/|Nf |1/2 and N/u∗ for the imposed-stability-
dominated SBL should be considered equally justified. In
the next section, we propose somewhat more general SBL-
depth formulations that incorporate these scales as particular
cases.

5. Generalized formulations

Consider the following power-law expression pertinent to
the surface-flux-dominated SBL:

h/L ∝ (
L|f |/u∗

)−γ
, (16)

where the exponent γ lies in the range from 0 to 1/2. Clearly,
the Zilitinkevich (1972) formulation, h ∝ (u∗L/|f |)1/2, is
recovered with γ = 1/2. It is straightforward to verify

that the inequality (h/L)
(
L|f |/u∗

)1/2 � 1 is satisfied with
any value of 0 ≤ γ < 1/2, provided that the dimensionless
stability parameter L|f |/u∗ is small (see discussion in the
previous section concerning the asymptotic nature of the
SBL depth formulations). With γ = 0, the equilibrium SBL
depth ceases to depend on the Coriolis parameter in its
explicit form and Eq. (16) turns into the Kitaigorodskii
(1960) formulation h ∝ L. In this way, a power-law
formulation (16) is a generalization of the two previous
formulations, as it incorporates the two alternative depth
scales for the surface-flux-dominated SBL as particular cases.

For the imposed-stability-dominated SBL, a generalized
power-law expression reads

hN/u∗ ∝ (|f |/N
)−δ

, (17)

where 0 ≤ δ ≤ 1/2. The Pollard et al. (1973) formulation,
h ∝ u∗/|Nf |1/2, is recovered with δ = 1/2. The Kitaigorod-
skii and Joffre (1988) formulation, h ∝ u∗/N , which does
not incorporate the Coriolis parameter, is recovered with
δ = 0.

The power-law expressions (16) and (17) may be viewed
as examples of so-called self-similarity of the second kind.
In order to elucidate this feature, consider the following
example. Suppose a physical variable in question depends on
three governing parameters. If these governing parameters
have two independent dimensions, the Buckingham (1914)
� theorem states that the relation sought can be written in
dimensionless form as

v̂ = F (�) . (18)

Here, v̂ is the variable in question made dimensionless
with an appropriate scale, and � is a single dimensionless

parameter that can be composed of three dimensional
governing parameters with two independent dimensions.
We are interested in the limiting behaviour of the function
F as the dimensionless parameter � tends to zero. There
are two essentially different possibilities (Barenblatt, 1982,
1996).

(i) As � → 0, F tends to a constant different from zero.
This case is referred to as self-similarity of the first
kind or complete self-similarity with respect to the
parameter �.

(ii) As � → 0, F does not have a finite non-zero limit,
however, the following power-law asymptotics holds
true:

v̂ = C�α , (19)

where C is a dimensionless constant. That is, the
variable v̂ depends on the dimensionless parameter
� no matter how small this parameter may be. This
case is referred to as self-similarity of the second
kind or incomplete self-similarity with respect to the
parameter �. Importantly, the exponent α cannot be
determined by dimensional analysis.

Actually, there is a third possibility where neither (i) nor
(ii) takes place. In that case there is no self-similarity with
respect to the parameter �.

Self-similarity of the second kind is often encountered
in physics and mathematics. A large number of illustrative
examples from different areas of study, ranging from fractal
curves to the theory of elasticity and including geophysical
fluid dynamics, are considered by Barenblatt (1982, 1996).
The atmospheric surface-layer flux-profile relationships as
viewed from the self-similarity standpoint are discussed in
Kramm and Herbert (2009). A close analogy between the
self-similarity of the second kind and the renormalization
group theory that found some use in turbulence studies is
discussed in Goldenfeld et al. (1989). Self-similar solutions
of the second kind occur in numerous physical problems
as so-called intermediate asymptotics. An intermediate
asymptotic is an asymptotic solution to the problem that
holds at X1 � x � X2, where X1 and X2 are governing
parameters that have the same physical dimensions as an
independent variable x (see Barenblatt, 1982, 1996). In
statistical physics, this is referred to as scaling (Goldenfeld
et al., 1989).

We may now consider Eq. (16) in terms of self-similarity
of the second kind. The dependence of h on the parameters
governing the surface-flux-dominated SBL, namely L, f
and u∗, may be represented in dimensionless form as
h/L = F

(
L|f |/u∗

)
, cf. Eq. (18). The parameter L|f |/u∗ is the

only dimensionless parameter that can be composed from L,
f and u∗, since these three quantities have two independent
dimensions. A close analogy between the power laws (16)
and (19) is immediately seen, suggesting that Eq. (16) is
a self-similar expression of the second kind. Notice that
according to the Barenblatt (1982, 1996) classification, the
case γ = 0 should be viewed as an example of self-similarity
of the first kind, or complete self-similarity with respect to
the parameter L|f |/u∗. It is interesting to note further that
the validity of Eq. (16) with γ > 0 implies the validity of the
following double inequality:

L � h � u∗/|f |. (20)
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Figure 1. Dimensionless SBL depth h|f |/u∗ as a function of the composite
stability parameter u∗/

(
CuN L|f |) + N/|f |. The solid curve shows the

Zilitinkevich and Mironov (1996) formulation, Eq. (23), with Cn = 0.5,
Cs = 10 and Ci = 18. The dashed curve shows the Zilitinkevich et al. (2002)
formulation, Eq. (22), with CR = 0.5, CS = 1 and CuN = 0.56. Asterisks
are data from measurements in the atmospheric and benthic SBLs. Circles
are LES data. See text for details.

Although Eq. (20) holds for the quantity sought for rather
than for an independent variable (see above), it suggests
that the SBL depth formulation (16) has an intermediate
asymptotic character at γ > 0.

A power-law expression (17) for the depth of the imposed-
stability-dominated SBL can also be considered in terms of
self-similarity of the second kind. Indeed, the dependence
of h on the parameters governing the imposed-stability-
dominated SBL may be represented in dimensionless form
as hN/u∗ = F

(|f |/N
)
, since the parameter |f |/N is the only

dimensionless parameter that can be composed from N , f
and u∗. A close analogy between the power laws (17) and
(19) suggests that Eq. (17) is a self-similar solution of the
second kind. The case δ = 0 should be viewed as an example
of self-similarity of the first kind, or complete self-similarity
with respect to the parameter |f |/N . The validity of Eq. (17)
with δ > 0 implies the validity of the following double
inequality:

u∗/N � h � u∗/|f |, (21)

which suggests that the SBL depth formulation (17) has an
intermediate asymptotic character at δ > 0.

Recall that γ and δ cannot be determined by dimensional
analysis. These exponents should be determined either from
an exact solution to equations governing the structure of
mean fields and turbulence in the SBL, or, if such a solution
is not known, from experimental data.

6. Data

In Figure 1, the SBL depth evaluated from Eq. (1) in
its reduced form, without the intermediate scales, and
from Eq. (2) is compared with data from measurements
in natural conditions and from large-eddy simulations.
Observational data include the point from Weatherly and
Martin (1978), representing the benthic boundary layer,
the atmospheric boundary-layer data from Lenschow et al.
(1988a, 1988b, Flights No. 5 and 6) and the atmospheric
boundary-layer data from Overland and Davidson (1992,
the median and upper hinge estimates for northerly winds

100 200 400 1000
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0.1

0.2
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/u
*

 u*/(CuNL|f |)+N/|f |

Figure 2. As Figure 1 but on a log–log scale for values of the composite
stability parameter u∗/

(
CuN L|f |) + N/|f | in excess of 100.

and the lower hinge, median and upper hinge estimates
for southerly winds). The LES data are from Mason and
Thomson (1987, case B10), Mason and Derbyshire (1990,
case B), Andrén and Moeng (1993), Brown et al. (1994, cases
BA10, BA10HR, BC10(12k6) and BC10(28k8)), Andrén
(1995, case SGSM2), Saiki et al. (2000), Kosović and Curry
(2000, NL cases generated with the nonlinear subgrid-
scale model), Zilitinkevich and Esau (2003, barotropic cases
TrNBt through SBt3) and Beare and MacVean (2004, cases
C91 and F93).

In order to show all data points on the same plot, the
ZBRSLC02 Eq. (2) is rearranged to give

(
h|f |
u∗

) [
1

C2
R

+ CuN

C2
S

(
1

CuN

u∗
|f |L + N

|f |
)]1/2

= 1, (22)

with the estimates CR = 0.5, CS = 1 and CuN = 0.56 given
by Zilitinkevich and Esau (2003). Rearranging the ZM96
Eq. (1), we obtain

1

C2
n

(
h|f |
u∗

)2

+ 1

Ci

(
Ci

Cs

u∗
|f |L + N

|f |
) (

h|f |
u∗

)
= 1, (23)

with the estimates Cn = 0.5, Cs = 10 and Ci = 20 given by
ZM96. In the case CuN = Cs/Ci, both theoretical curves and
all data points can be shown on the same plot in terms of
the dimensionless SBL depth h|f |/u∗ versus the composite
stability parameter u∗/

(
CuN L|f |) + N/|f |. To do so, we

adjust the constant Ci in Eq. (23) so that Ci = Cs/CuN .
Using CuN = 0.56 and Cs = 10, we obtain Ci = 17.86 ≈ 18,
which is very close to the ZM96 estimate of Ci = 20 and is
within the accuracy of the analysis.

As Figure 1 suggests, both the ZBRSLC02 formulation and
the ZM96 formulation show a satisfactory agreement with
data. On average, Eq. (22) reveals a somewhat higher bias
than Eq. (23), 1.8×10−3 versus 1.1×10−3, but a somewhat
lower root-mean-square (r.m.s.) error, 2.1×10−2 versus
3.0×10−2, respectively. The corresponding dimensional
values of bias and r.m.s. error are 15.3 m and 81.0 m,
respectively, for Eq. (22) and 8.3 m and 99.7 m, respectively,
for Eq. (23).

Figure 2 is similar to Figure 1, except that the two
theoretical curves and the data are shown for values of
the composite stability parameter u∗/

(
CuN L|f |) + N/|f |
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in excess of 100. Notice that in the case of sufficiently
strong stability, Eq. (22) corresponds to γ = δ = 1/2 (upper
limit for the exponents) in the generalized SBL-depth
formulations (16) and (17) and Eq. (23) corresponds to
γ = δ = 0 (lower limit for the exponents). As Figure 2
suggests, some data points support Eq. (22) whereas other
points support Eq. (23). It is, therefore, hardly possible to
decide between the two formulations for the equilibrium
SBL depth on purely empirical grounds. The data scatter is
large, rendering it impossible to determine γ and δ with a fair
degree of accuracy. It should be noted that the dependences
shown in Figures 1 and 2 may be subject to self-correlation
(Klipp and Mahrt, 2004); f appears in the numerator of
h|f |/u∗ and in the denominator of u∗/

(
CuN L|f |) + N/|f |.

An attempt to plot dimensional SBL depth h versus
the composite stability parameter u∗/

(
CuN L|f |) + N/|f |

(not shown) does not reduce the data scatter. Thus, our
conclusion concerning the impossibility of discriminating
between the alternative formulations on the basis of available
data remains in force.

As regards practical applications, both multi-limit
formulations (22) and (23) or similar formulations with γ

and δ in the range from 0 to 1/2 can be used, keeping in mind
their inherent uncertainties. The multi-limit formulations
are expected to give similar results for stability conditions
typical of the atmospheric and oceanic SBLs, provided
the disposable dimensionless coefficients are appropriately
tuned.

7. Conclusions

The effect of rotation on the equilibrium depth of a
stably stratified barotropic boundary layer is analyzed.
Two alternative depth scales have been proposed for a SBL
dominated by surface buoyancy flux. Kitaigorodskii (1960)
assumed that the Earth’s rotation is no longer important as
static stability becomes strong and that the SBL depth scales
with the Obukhov length. Zilitinkevich (1972) proposed
an alternative scale that depends on the Coriolis parameter
no matter how strong the static stability. Similarly, two
alternative depth scales have been proposed for an SBL
dominated by static stability at its outer edge. The depth
scale introduced by Kitaigorodskii and Joffre (1988) does
not depend on the Coriolis parameter, whereas the Pollard
et al. (1973) scale does.

The analysis in sections 2 and 3 suggests that all the above
depth-scale formulations are consistent with TKE-budget
and momentum-budget considerations. The assumptions
invoked to derive alternative formulations are different,
however. A critical issue is the ratio h/hE of the SBL depth to
the Ekman depth. Assuming h/hE to be constant yields SBL
depth expressions that incorporate the Coriolis parameter,
however strong static stability might be. Assuming h/hE to
be small (as compared with 1) allows elimination of the
Coriolis parameter from the expressions for the equilibrium
SBL depth.

It is demonstrated that in the case of sufficiently strong
static stability the alternative depth-scale formulations
represent particular cases of more general power-law
formulations, Eqs (16) and (17), with the power-law
exponents γ and δ in the range from 0 to 1/2. With
γ =1/2 and δ=1/2, Eqs (16) and (17) yield the Zilitinkevich
(1972) scale and the Pollard et al. (1973) scale, respectively.
In the limit γ =0 and δ=0, the SBL depth scales cease

to depend on the Coriolis parameter in their explicit
form and the formulations proposed by Kitaigorodskii
(1960) and Kitaigorodskii and Joffre (1988), respectively,
are recovered. Interpretation of the generalized power-law
formulations is proposed in terms of self-similarity of the
second kind (also referred to as incomplete self-similarity).
Self-similarity of the second kind places the generalized
scaling formulations (16) and (17) into a well-established
physical and mathematical framework. Furthermore, the
notion of intermediate asymptotics helps to clarify the limits
of applicability of the proposed generalized relations through
the double inequalities (20) and (21).

The power-law exponents in Eqs (16) and (17) cannot
be determined by dimensional analysis. To do this would
require an exact solution to equations governing the
structure of mean fields and turbulence in the SBL. Since
such a solution is not known, the exponents should be
evaluated from experimental data. Available observational
and numerical data are uncertain. They render it impossible
to evaluate γ and δ to sufficient accuracy and to decide
conclusively between the alternative formulations for the
SBL depth. As regards practical applications, multi-limit
formulations, e.g. Eqs (22) and (23) or similar formulations
with power-law exponents in the range from 0 to 1/2,
are expected to give similar results for stability conditions
typical of the atmospheric and oceanic SBLs, provided
the disposable dimensionless coefficients are appropriately
tuned.
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