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We study oscillations that develop in flows along a uniform planar slope in an initially
resting stratified fluid as a result of sudden application of a surface buoyancy flux. After an
oscillatory adjustment (transition), the fluid reaches another steady state that corresponds
to a stationary slope flow. The analysis is focused on the temporal evolution of the integral
momentum and buoyancy structure in the laminar Prandtl-type slope flow. The main
questions addressed are related to physical conditions leading to emerging of the en masse
oscillations in the transitioning slope flow, the frequency of these oscillations, and features
of their temporal evolution. The persistence of oscillations in Prandtl-type slope flows
is found to be associated, somewhat paradoxically, with the fast temporal decay of the
surface stress oscillations in the process of the stress approaching a constant value. This
relatively rapid evolution of the surface stress progressively weakens damping of the integral
momentum and buoyancy oscillations. Extensions of the analyses to the Prandtl slope flow
driven by the surface buoyancy and to the turbulent slope flows are proposed and discussed.
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1. Introduction

Anabatic (upslope) and katabatic (downslope) winds are two
common boundary-layer-type flows observed in the atmosphere
above sloping terrain. From the fluid-dynamical standpoint, such
slope winds are buoyantly (or convectively) driven motions of a
stratified fluid along heated (anabatic flow) or cooled (katabatic
flow) sloping surfaces. Despite recent progress in the conceptual
understanding of the slope flows in their idealized or prototypic
forms, that is, assuming an infinite planar slope with a spatially
uniform surface thermal forcing and linear thermal stratification
of the ambient fluid (see review in Fedorovich and Shapiro
(2009)), some outstanding questions remain regarding various
aspects of the physical behaviour of such flows. Of particular
interest in this respect are oscillatory slope flow regimes associated
with transitions between steady states of the flow under the effect
of changing surface thermal forcing.

In this study we analytically investigate oscillations that develop
in laminar slope flows along a uniform planar slope in a stably
stratified atmosphere as the result of a sudden application of the
surface buoyancy flux. The stratified fluid, which fills the space
above the slope, is initially at rest. After an oscillatory adjustment,
the fluid reaches another steady state that corresponds either
to a stationary katabatic flow (in the case of a negative surface
buoyancy flux) or to a stationary anabatic flow (in the case of a
positive surface buoyancy flux).

An early milestone in the description of katabatic/anabatic
flows was the Prandtl (1942) analytical model of the laminar
natural-convection flow of a viscous stably stratified fluid along
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a uniformly cooled or heated sloping planar surface. Flow in
Prandtl’s one-dimensional model has a boundary-layer character
(low-level jet topped by weak reversed flow). The model
describes a slope flow in mechanical and thermodynamical
equilibrium, where the along-slope advection of environmental
potential temperature balances the buoyancy diffusion, and
the along-slope component of buoyancy balances diffusion of
along-slope momentum. All other terms in the equations of
motion and buoyancy balance are identically zero. Observations
suggest that, with appropriately tuned mixing parameters, this
simple model provides an overall realistic description of the
vertical structure of slope flows (e.g. Defant, 1949; Tyson, 1968;
Papadopoulos et al., 1997; Oerlemans, 1998).

Analytical solutions for unsteady Prandtl-like slope flows
starting from rest were considered in several studies. Gutman and
Malbakhov (1964) extended the unsteady Prandtl-flow model to
include the Coriolis force, though Egger (1985) noted several
unphysical aspects of that solution; see also Stiperski et al. (2007)
and Shapiro and Fedorovich (2008). In a study of wind oscillations
in katabatic flows, McNider (1982) solved the layer-averaged
Prandtl equations with a highly idealized parametrization of the
surface drag that was simply set proportional to the wind speed
integrated over the slope-normal coordinate. Grisogono (2003)
suggested that the assumed constancy of the eddy viscosity in the
original Prandtl model produced near-surface wind gradients that
were generally too weak and obtained an unsteady approximate
solution of the Prandtl equations for a prescribed slowly varying
(in slope-normal coordinate) eddy viscosity. Mo (2013) extended
the McNider (1982) study of oscillations in katabatic flows by
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including a Newtonian cooling term in the layer-averaged thermal
energy equation.

Schumann (1990) used large-eddy simulation (LES) to
investigate the developing turbulent anabatic boundary layer
along a uniformly heated inclined plate immersed in a
stably stratified fluid. In that study, transient momentum and
temperature solutions underwent persistent oscillations with a
frequency close to Nsina, where N is the Brunt—Viisild (or
buoyancy) frequency of the ambient fluid and « is the slope
angle. In order to expedite a transition of the oscillatory solutions
to the steady flow regime, Schumann (1990) forced damping of the
oscillations by applying a specially designed relaxation algorithm.
The employed numerical set-up permitted comparison of mean
steady-state solutions with predictions of the Prandtl model,
which indicated that for small- and moderate-angle slope flows,
results of the Prandtl theory were supported fairly well by the
numerical data, apart from structural differences in the mean-flow
profile shapes.

A closer look at the oscillations in turbulent slope flows
developing from rest was taken in a direct numerical simulation
(DNS) study by Fedorovich and Shapiro (2009), who found that
turbulent fluctuations of velocity and buoyancy in the near-
wall regions of the flows were superimposed with persistent
quasi-periodic oscillations which had a frequency close to the
natural buoyancy frequency N sin «. These persistent oscillations
were apparent far beyond the thermal and dynamic turbulent
boundary layers developing along the slope and showed very little
(if any) tendency to decay with time. Oscillatory flow patterns
similar to the pattern observed in Fedorovich and Shapiro (2009)
had been previously described by Shapiro and Fedorovich (2006)
in their study of laminar natural convection flow along a wall with
a temporally periodic surface thermal forcing. In the case of slope
flow in Fedorovich and Shapiro (2009), however, there was no
temporal variability in the surface forcing. Instead, the oscillatory
motion was a result of an internal negative feedback mechanism
acting in the stratified fluid system that was adapting to the
new steady state. Such oscillations, analogous to the oscillations
encountered by Schumann (1990), were also observed in the
katabatic wind studies of Monti et al. (2002) and Princevac et al.
(2008), where the frequency N sin « was, apparently erroneously,
attributed to internal gravity waves that arrive normal to the
slope — rather than associating it with en masse flow oscillations
(see Chemel et al., 2009, p. 191).

In the present study, the oscillatory behaviour of laminar
slope flows is investigated using nonstationary versions of the
Prandtl (1942) model equations first derived and discussed by
Defant (1949). Solutions of the Defant problem for the slope-flow
case with time-periodic surface buoyancy forcing were recently
obtained by Zardi and Serafin (2015), whose temporally evolving
profiles of velocity and buoyancy turned out to be similar to
the profiles from the aforementioned study of Shapiro and
Fedorovich (2006), with direct correspondence between the
profiles for the special case of flow along a vertical wall. The
present study, however, is focused on the temporal evolution
of the integral momentum and buoyancy structure of the slope
flow started from rest by application of a time-constant surface
buoyancy flux. The main questions to be addressed are related to
the nature of the en masse oscillations in a slope flow transitioning
between two steady states, the frequency of these oscillations, and
features of their temporal evolution.

The governing equations of slope-flow dynamics, and their
reduction to the Defant (1949) and Prandtl (1942) model
equations are considered in section 2. In section 3, general
solutions of the nonstationary equations for the integral
momentum and buoyancy are obtained for a fluid that is initially
at rest and eventually reaches the Prandtl (1942) equilibrium flow
state after an oscillatory transition. The temporal evolution of the
flow variables and other parameters is presented and analysed in
section 4. Extensions of the results to related slope-flow types are
presented and discussed in section 5.
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2. Governing equations

We employ the Boussinesq equations of three-dimensional fluid
motion in a right-hand Cartesian (x, y, z) coordinate system
following an infinite planar slope tilted at angle o relative to the
horizontal plane (Fedorovich and Shapiro, 2009). The x-axis is
directed upslope, the y-axis is directed cross-slope, and the z-axis
is directed normal to the slope. With the Coriolis force neglected,
the equations of motion are
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The thermal energy equation is formulated in terms of the
buoyancy b as

ab ab ab ab
—+tu v
at ax dy dz
b 3%

= —N?*(usina + wcosa) + vy, (— + —

o
axz a2 a2’

(4)

The mass conservation is given by the continuity equation for
an incompressible fluid:

Bw_

3u+3v
9z

ox oy 0. (5)
In the above equations, u, v, and w are, respectively, the x, y,
and z velocity components, v is the kinematic viscosity, and vy, is
the thermal diffusivity. The normalized pressure perturbation
is defined through 7 ={p—pc(z')}/p;, where p.(z') is the
environmental pressure, ' is the true vertical coordinate which is
directed opposite to the gravity acceleration vector, and p, = const
is a reference density value. Buoyancy b = 0 is expressed in terms
of the potential temperature perturbation 6 = ® — ©.(z'), where
® is potential temperature, ®,(z’) is the environmental potential
temperature, f=g/0; is the buoyancy parameter, ®; = const
is the constant reference potential temperature value, and g is
the gravity acceleration magnitude. The vertical gradient of the
environmental potential temperature, y = d®./dz/, is assumed to
be constant, which implies also constancy of the environmental
Brunt—Viisild (or buoyancy) frequency N = (By)"2.

With the assumed flow homogeneity in the x and y directions,
and w=0 on the slope, the incompressibility condition yields
w(x,y,2z,t) =0. Assuming additionally no cross-slope motion
(v=0), the governing equations may be reduced to

2
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The coupled Egs (1a) and (4a) correspond to Defant’s (1949)
nonstationary Prandtl slope-flow case and were used in Zardi
and Serafin (2015) to analytically study slope flows driven by
time-periodic surface thermal perturbations. The Prandtl (1942)
model equations,

32
Ozbsinoc—i—v—u, (1b)
022
3%b
0= —N’usina + v, —, (4b)
072

result from the further reduction of the governing equations
by assuming the steady state. In Prandtl (1942), the solutions
of Egs (1b) and (4b) were obtained with a prescribed value
of the surface buoyancy bs = b—,—( = const. Solutions of Eqs
(Ib) and (4b) for the case of a prescribed surface buoyancy
flux, —vh% |Z:0 = By = const, are considered in Fedorovich and
Shapiro (2009).

In the following section, vertically (over z) integrated Eqs (1a)
and (4a) are derived and analysed for a special case of v=vy,
(i.e. for Prandtl number, Pr=v/vy, of unity). These equations
are applied to investigate the evolution of the vertically integrated
momentum and buoyancy fields in a slope flow developing
from rest and forced by a specified surface buoyancy flux
B = const.

3. Analysis of the integral momentum and buoyancy
equations

We first normalize the independent and dependent variables
in Eqs (la) and (4a) using the scales v'2N~"2sin~"2q for
length, v~ 2N~32B for velocity, v~ /2N~ 12B; for buoyancy,
and N~ !sin"'a for time. The first three scales are similar to
the ones that have been used in Fedorovich and Shapiro (2009)
to normalize the Prandtl (1942) model equations for the case of
slope flow driven by the buoyancy flux. In terms of the normalized
quantities, Eqs (1a) and (4a) appear as

ou 3%u (10)
o 22 c
at 022

ab N 3%b (40)
a2

ot 822 ¢

where we keep the same notation for the normalized variables as
for their dimensional counterparts. The normalized Eqs (1c) and
(4c) complemented with the normalized surface condition for
the buoyancy flux, — g—i’ .o = L, areidentical to the normalized
momentum and buoyancy balance equations employed in
Shapiro and Fedorovich (2004) to describe a non-stationary
convectively driven flow along a vertical wall.

Integrating Eqs (1c) and (4c) over z from 0 to oo noting that
both dimensionless momentum and buoyancy fluxes (— du/dz
and — db/dz, respectively) vanish at z — 0o, we obtain the integral
budget of the x-component of momentum,

dIU
— =0 —r, 6
g bt (6)
and the integral budget of buoyancy
dr,
L ST 7
% + (7)

o0 o0
where I, =/ udz and I, =f bdz are the normalized
0 0
Veloc_ity anq buoyancy integrals, respectively, and v = ?TZ |Z:0 is
the dimensionless surface shear stress.
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Differentiating Eqs (6) and (7) with respect to t and combining
terms, we come up with two oscillator equations, one for the
integral momentum,

d?1, D=1 dr (®)
ez M dt’
and another for the integral buoyancy,
%1,
@ +I=r. 9)

Apart from being written in dimensionless form, Egs (8)
and (9) are equivalent to the oscillatory slope-flow equations in
Schumann (1990), who derived these equations for the turbulent
flow fields averaged over slope-parallel planes. The resulting
oscillator equations (16) and (17) in Schumann (1990) have
exactly the same form as Eqs (8) and (9). Schumann (1990)
suggested that these relationships describe oscillations of I, and
I, with a weak damping maintained by the surface stress (friction)
7. However, as will be shown below, the damping may also be
zero even if the surface stress is present.

Solutions of Eqs (8) and (9) for I,, and I}, that satisfy initial
conditions of no motion and no buoyancy (I, =0 and I, =0 at
t=0) are

L(t)=1-— cost—/ t(f) cos(t — £ )dt, (10)
0

Ib(t)zsint—l—/ (¢ ) sin(t — £)dt . an
0

Although Eqs (10) and (11) contain oscillatory terms, one
cannot conclude that the resulting solutions are oscillatory
without knowing how 7 behaves. In the special case of no surface
friction (t =0), the integrals on the right-hand sides of Egs (10)
and (11) vanish. In this case, the slope flow perpetually oscillates
with a normalized natural frequency of 1, and the momentum
and buoyancy oscillations are shifted in phase by 77/2 with respect
to each other.

Let us consider, as another option, the case where the surface
stress T attains a steady state after a finite time ¢*. For times
t>1t*, Eqs (10) and (11) can be solved as

L,(t) = I,(t") 4+ cos t* — cost — T sin(t — ), (12)

I,(t) = I,(t*) +sint — sint* + 7{1 — cos(t — t*)}.  (13)

We thus see that the constant-stress solutions of Eqs (8)
and (9) for t > t* are of an undamped oscillator. Remarkably,
the constant surface stress will not provide any damping, and
oscillations of I,, and I, will persist indefinitely long.

Now consider a situation where the surface stress is
proportional to the velocity integral, i.e. v=kI,, where k
is a constant non-negative parameter. Such a drag-type
proportionality assumption is analogous to the one adopted
by McNider (1982). In this case, Eq. (8) can be rewritten as

El o d
dr? & T

(14)

A particular solution of Eq. (14) is I, =1. Homogeneous
solutions are of the form I,~e™ provided m satisfies
m? +km + 1 =0. We solve for m to get

m=(—k+ vk —4)/2,
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Further evaluation of the solution depends on the value of the
discriminant k* — 4. In the case of 0 < k? < 4, the homogeneous
solution for I, has the form of an underdamped oscillator:

I, =e" ¥ {acos (2\/4— kz) + bsin (%\/4— kz)}. (16)

The particular solution of Eq. (14) that satisfies the initial
condition of no motion and no buoyancy (from Eq. (6),
I, = dI,/dt = 0 initially) is therefore

e o 39) g ()

(17)

k
Wreys sin <2

Applying Eq. (17) in Eq. (6), we obtain the corresponding
solution for I, in the form:

kt 2—k
Iy=k—e™ 2 {k Vi—k)-—
b € { COS(2 > 4_k2

2

o (1)

(18)

In the case of k =0, the relationships Eqs (17) and (18) reduce
to the undamped oscillator solutions with normalized frequency
of unity:

I, =1—cost, I, =sint. (19)

This solution also follows from Eqs (10) and (11) for the case
of zero surface stress. As follows from Eqs (17) and (18), the
factor k plays three main roles in the underdamped oscillator.
First, it controls the damping efficiency of the oscillator, so that
oscillations die out faster with larger k. Second, it modulates
the frequency of oscillations by shifting it toward lower values
compared to the normalized natural frequency of 1. Finally, it
regulates the offset between the equilibrium levels of I, and
Iy, with k=1 being the value at which these levels are the
same. The special case T = kI, with k=2 corresponds to the so-
called critically damped oscillator. When k > 2, oscillations are no
longer possible. In this so-called overdamped case, the solutions
approach their equilibrium values without oscillations.

Figure 1 presents an overview of I, I, and t behaviour for
different values of k in the solutions Eqs (17) and (18) for the
underdamped oscillator with 7 = kI,,. The case of k=0 (plot (a))
corresponds to an undamped oscillator with zero surface stress,
and I,, and I;, that harmonically vary in time with a dimensionless
period 27 (corresponding to the normalized angular frequency
1) and dimensionless amplitude 1. The case of k= 0.1 (plot (b))
corresponds to a weakly damped oscillator with the amplitudes of
the I,, and I, oscillations decaying with time as e~ %%, Due to the
weak damping, one cannot visually trace in the plot the lowering
of the oscillation frequency to 0.999 and the period increase to
6.29. However, changes in both the parameters start becoming
noticeable in the plot for k=0.5 ((c); the case of moderate
damping), where the amplitudes decay with time as e~ 025t the
normalized frequency drops to 0.968, and the period rises to 6.49.
With strong damping ((d); case of k = 1), the resulting amplitude
decay (cce™ %), as well as the oscillation frequency decrease
(down to 0.866; with period increase to 7.26), become apparent.

One may reinterpret the behaviour of the McNider (1982)
oscillator with different degrees of damping in terms of
dimensional flow variables. For typical slope-flow conditions
represen’[edbyN:lO_2 sThLv=1lm?s !, Bg=10"2m? s~ 3,
and « = 30°, we obtain a length scale of 14.1 m, velocity scale of
10 m s~ !, buoyancy scale of 0.1 m s~ 2, and time scale of 200s.
This time scale corresponds to a dimensional natural frequency
of 5 x 10~ % s~ ! and a natural oscillation period roughly equal to
12565, both of which appear to be within their observed ranges
for slope flows in nature (Chemel et al., 2009). The dimensional
damping factor (drag coefficient) k4, expressed as k multiplied
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by the ratio of the velocity and length scales, is equal to 0.71 k
s~ L. Now one can estimate the dimensional rate of oscillation
decay in terms of the e-folding time with different damping
factors. Noticing from Eq. (16) that the dimensionless e-folding
time is given by f. =2/k and renormalizing f. accordingly, we
obtain the following estimates of the dimensional e-folding time
teq for different values of damping factor: t.q =4000 s for the
weakly damped oscillator (k=0.1), t.g = 800 s for the moderately
damped oscillator (k=0.5), and f,g =400 s for the strongly
damped oscillator (k=0.5). All flow variables shown in Figure 1
may be rescaled to atmospheric dimensions using the length,
velocity and buoyancy scales specified above. The rescaling of
7 indicates, in particular, that in order to get realistic values of
surface stress using the McNider (1982) model, the value of k
needs to be much smaller than 0.1.

4. Oscillatory solutions for flow integrals and surface stress

The analyses presented in section 3 indicate that knowledge of the
relationship between the surface stress and integral momentum
is key to understanding the oscillatory behaviour of the Prandtl
flow developing from rest. One may independently diagnose this
relationship from the non-stationary solutions for « and b using
results of Shapiro and Fedorovich (2004), where Eqs (1¢) and (4c)
were solved semi-analytically, with u and b obtained in the form
of integrals that need to be evaluated numerically. These integrals
(using notation adopted in the current article) are

z tsin(t—t) ‘ sint’ z2 v
u(z, t) = N t”3/2 exp <_@ dr dt,
(20)
and
z [Usin(t—f) [ cost’ z2 /
bz, t) = —/ ( - )/ s exp| —— dr’dr.
27 0 (l’ —t )3/2 0 t”3/ 4t

(21)

Using Eq. (20) to evaluate g—“ , one obtains the surface stress

z ’z:O

. "
sint "

du 1 [*sin(t—f) [© :
T(t) = — =— de dt. (22
=75 o 2mJo (E—1)2 [y ¢ 22
For the vertically integrated u, Eq. (20) provides
o 1 (fsin(t—t) [Using
Iu(t):/ udz:—/ sint - )/ Bdldl. (23)
0 wlo =12 Jy 12

Finally, the vertically integrated b is obtained using Eq. (21) as

Ib(t)—[ bdz ——/

The solutions Eqs (22)—(24) are plotted in Figure 2. The
behaviour of the solutions for I, and Ij, at small times ¢ < 47
reveals strong initial damping that progressively weakens with
time. At t 2 8w, the damping is virtually undetectable. On the
other hand, the surface stress t, which initially shows noticeable
fluctuations, rapidly approaches a constant value of unity. This
relatively fast decrease of the amplitude of t oscillations — as
compared to the decay of the I, and I} oscillations — happens
in accordance with Eq. (22), which contains a factor of (¢)~3/?
in the second integral on the right-hand side, while analogous
terms in Eqs (23) and (24) behave as (t/)~ 2. The I,, and I,
integrals oscillate in antiphase, as determined by the sin ¢’ term
in Eq. (23) versus the cost” term in Eq. (24), while 7 oscillations
are in phase with I, as Eqs (22) and (23) both contain sin¢”
under the integrals on the right-hand sides. As 7 rapidly becomes

”
Ccost
t// 1/2

sin(t — ¢ ! "o
tit 3/2) dr dt. (24)
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Figure 1. Evolution of the integral momentum I,, (red lines) and buoyancy I, (blue lines) in the regime of underdamped oscillations with surface stress t = kI,, (black
lines) for different values of damping parameter k: (a) k=0, (b) k=0.1, (c) k=0.5, and (d) k= 1. Thin vertical lines indicate 2 time intervals corresponding to the

normalized natural frequency of 1.

2_
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= 1 2QNC
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Figure 2. Dimensionless integral momentum I, (red line), integral buoyancy I,
(blue line), and surface stress v (black line) evaluated, respectively, from Eqs
(23), (24) and (22) as functions of dimensionless time . Green line illustrates the
evolution of the 7 to I, ratio (the counterpart of the damping parameter k in
the underdamped oscillator theory). Thin vertical lines indicate 27 time intervals
corresponding to the normalized natural frequency of 1.

practically constant, its damping effect on the integrals I,, and I,
significantly diminishes, and the decay of the I,, and I}, oscillations
progressively weakens. In accordance with Eqs (12) and (13), the
damping would be non-existent in the case of 7 being exactly
constant. Despite the fact that oscillations eventually die out while
the flow reaches a steady state at t — oo (Shapiro and Fedorovich,
2004), the flow conversion to such steady state in terms of I,, — 1
and I, — 1 happens very slowly in comparison to the rate of t
converging to 1. Thus, the persistence of en masse oscillations
in Prandtl-type slope flows appears to be associated with the
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fast decay of the surface stress oscillations which promotes the
attenuation of damping of the integral momentum and buoyancy
oscillations.

Figure 2 also depicts the temporal behaviour of the /I,
ratio. The strong variability of /I, with time indicates that the
assumption of constancy of this ratio adopted by McNider (1982)
is actually not valid in the considered flow case. Values of the
damping (drag) coefficient k=1/I, are very large during the
early stage of the transition (at ¢ < 27/3), which points to a very
strong damping at this stage, and then fluctuate around 1 with the
magnitude of fluctuations decaying very slowly while remaining
in antiphase with I,,.

The relation between the surface stress 7 and the momentum
integral I, is additionally illustrated in Figure 3. The coupling
between these two flow parameters is strong at the initial stages
of the flow development (small ¢), when values of both variables
are smaller than 1. Actually, for very small times ¢ and given
0<¢" <t <t, one may approximate sin(f —t') by t—¢ and
sint” by t”, which then turn Eqs (22) and (23) into

(1) I/t o~ dt' = pt (25)
T = — e = 5
T Jo (t—t/)l/z p
2 t t/3/2
L) =—| ———df =q¢%, 26
0= [ mar=a (26)
) Lon

h d the definite integrals p= 1 | —————-d
where p and g are the definite integrals p ﬂ/() 1 -~ H

1 3/2
and g = & /0 (II—LW du, where p is a dummy variable of
integration. These integrals can be explicitly evaluated as p=1/2
and q = 1/4, which provides T = /I, for small ¢. This behaviour
is evident in Figure 3.

Q. J. R. Meteorol. Soc. 143: 670—677 (2017)
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1
1.5

B

u

Figure 3. Red line: dimensionless surface stress v from Eq. (22) plotted against
dimensionless integral momentum I,, from Eq. (23). Blue line: 7 = 1,2

Later on, during the oscillatory flow phase, the correlation
between the stress and momentum integral gradually becomes
weaker as the stress becomes essentially constant, while the
momentum integral continues to oscillate. This weakening
correlation is evidenced by the changes in orientation of the
individual pieces of the red line that progressively become directed
more parallel to the I,, axis with each new oscillation.

5. [Extension to related slope-flow cases

In the previous section, we obtained solutions of the non-
stationary equations for integral momentum and buoyancy for a
fluid above a sloping surface that is initially at rest and eventually
reaches the Prandtl (1942) equilibrium flow state in the process
of an oscillatory transition. Solutions were obtained for the flow
driven by the surface buoyancy flux. It was found that quasi-
persistent oscillations of the flow in terms of its periodic integral
momentum and buoyancy fluctuations are associated with the
relatively fast convergence of the surface stress to a near-constant
value. This results in an attenuation of the damping effect of
surface friction on the oscillations.

Similar behaviour is found in the Prandtl-type slope flow
started from rest and driven by a time-constant surface buoyancy.
Based on analyses of Shapiro and Fedorovich (2004) and
Fedorovich and Shapiro (2009), the nonstationary Prandtl
flow equations for this forcing type may be normalized with
appropriate scales to obtain dimensionless equations of the same
form as Egs (1c) and (4c), but subject to a different surface
boundary condition for the dimensionless buoyancy: b|,—¢ =1.

Integrating Eqs (1c) and (4c) over z from 0 to oo noting that
both du/dz and 0b/dz vanish at z— oo, we obtain the integral
budget of the x-component of momentum,

dr,
i I -1, (6a)
and the integral budget of buoyancy
dr,
— =, s 7
a +B8 (7a)
o0 o0
where [, = / udz, I = f bdz and T = %’220 have been
0 0

defined previously,and = — 52

—o is the dimensionless surface
buoyancy flux.
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Differentiating Eqs (6a) and (7a) with respect to ¢ and
combining terms, we come up with the oscillator equations

d?1, il 8 dr (82)
= _ -y a

dez " de

d’1, dg

? + I, =1+ di (9a)

The solutions of Eqs (8a) and (9a) for I, and I}, that satisfy
initial conditions of no motion and no buoyancy (I, =0 and
Iy=0att=0) are

t t
I,,(t):—/ r(t/)cos(t—t/)dt/—i—/ B(¢)sin(t — ¢ )dt,
0 0
(10a)

Ib(t)zf t(t/)sin(t—t/)dt/—i—/ B(t) cos(t — ¢)dt'. (11a)
0 0

Let us consider a case of steady v and B, and examine the
implications of such shear stress and buoyancy flux constancy for
solutions of Eqs (8a) and (9a). For times ¢ > ¢ *, where t * is any
finite post-transition time, I, and I; in Eqs (10a) and (11a) can
be evaluated as

L,(t) = L,(t) — T sin(t —

) + B{1 — cos(t — t*)},  (12a)

Ip(t) = I,(t*) + t{1 — cos(t — t¥*)} + Bsin(t — t*).  (13a)

We thus see that the constant-stress and constant-flux solutions
of Eqs (8a) and (9a) for > ¢ * are again of an undamped oscillator
type. Consequently, under conditions of constancy of the surface
stress and surface buoyancy flux there will be no damping in the
fluid system, and oscillations of I, and I; will go on indefinitely.

Now one needs to determine how 7 and g actually change
with time in the case of the surface buoyancy condition. To do
this, we use the corresponding solutions of Eqs (6a) and (7a) with
b|,—¢=1 from Shapiro and Fedorovich (2004):

Psint’ z2

u(z, t) = 2\/_ ,3/2 ( 4t’> dr, (20a)
"cost

b(z, t) = 2\/_ ,3/2 < 4t’>dt (21a)

Evaluating ‘;—Z |Z:0 from Eq. (20a) and g—g |Z:0 from Eq. (21a),
one obtains the following expressions for the normalized surface
stress and buoyancy flux:

du _ smt ”

=G| = 2f/ el o
ab cost

- _ — 27

poO =3 N‘/ Srd @)

On the other hand, for the vertically integrated u and b, Eqs
(20a) and (21a) provide

smt

I,,(t):/(; udz—\/_/- ,3/2 (23a)
cost

Ib(t)=/0 bdz_f/ t3/2 (24a)

Comparing the rates of decay with time of the integrands in
Eqs (22a) and (27) to the analogous terms in (23a) and (24a),
we conclude that, like in the case of the slope flow with the
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Figure 4. Time evolution of the dimensional surface stress 7 (in m?s~2; black
dots) in relation to dimensional momentum and buoyancy integrals I,, (in m? s™';
red line) and I, (in m? s7%; blue line) in the turbulent anabatic flow driven by a

constant surface buoyancy flux.

300

surface buoyancy flux boundary condition, periodic fluctuations
of the integral momentum and buoyancy in the Prandtl-type
flow driven by the surface buoyancy are expected to decay with
time very slowly due to variations in the surface damping rapidly
decreasing with ¢.

The conducted analyses of the role of the surface stress in
promoting/damping integral oscillations in slope flows of Prandtl
type may be extended to the turbulent analogues of the Prandtl
flow studied in detail numerically in Fedorovich and Shapiro
(2009). In that study, numerically simulated turbulent katabatic
and anabatic flows exhibited persistent oscillatory behaviour after
being started from rest. Like in the case of the Prandtl flow, the
frequency of the ensuing oscillations was close to N sin. With
respect to the basic features of the mean structure (obtained by
averaging over the planes parallel to the slope and over time),
the simulated turbulent slope flows also appeared qualitatively
similar to their corresponding laminar counterparts. With the
Reynolds decomposition and averaging applied only over the
planes parallel to the slope, the normalized governing equations of
the turbulent slope flow integrated in the slope-normal direction
acquire the same forms as the nonstationary Prandtl-flow Eqs (6)
and (7), but with I,, and I}, signifying the normalized integrals of
the mean velocity and buoyancy, respectively, and t retaining
the meaning of the dimensionless surface shear stress. This
equivalence of integral forms of laminar Prandtl flow and its
turbulent counterpart was demonstrated in Schumann (1990).

One may revisit numerical simulations from Fedorovich and
Shapiro (2009) to investigate, in connection with results from
the present study, the damping effect of the surface stress on
the integral oscillations in a turbulent slope flow started from
rest by application of the surface buoyancy flux. The surface
stress and flow integrals were evaluated from the output of
direct numerical simulation of an anabatic flow along a slope of
a=m/4, withv=v,=10"*m? s~!, N=1 s, and driven by
a surface buoyancy flux of B;=0.5 m? s~3. The time evolution
of the dimensional momentum and buoyancy integrals in this
flow, and the corresponding surface stress, is illustrated in
Figure 4.

Like in the case of the laminar Prandtl flow (see Figure 2),
one can trace a close correlation between oscillations of T and I,
at the earlier stages of transition which are evidenced by black
dots closely following the red line for # < 100 s. This correlation
is associated with the relatively strong damping of both I,, and
I clearly seen in the plot. With time increasing, however, the
behaviour of 7 becomes more random and its correlation with
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Figure 5. Scatter plot of dimensional surface stress T (in m?s™2) versus
dimensional momentum integral I, (in m? s™!) corresponding to the time series
depicted in Figure 4. Different point colours illustrate a changing relation between
7 and I, at different stages of the flow evolution: t <66 (red); 66s <t <112s
(blue); 112s <t <178s (black); 178s <t < 244s (green); and 244s <t <310s
(magenta). Red line shows a linear fit of 7(I,) for t<66s, black line for
112s <t < 178s, and magenta line for 244s < t < 310s.

I, is essentially lost, although t values in average remain close
to a constant of about 0.08 m? s~ 2. Such overall constancy of
the surface stress allows us to speculate, by analogy with the
laminar Prandtl-flow oscillator, that the originally systematic
surface damping transforms into a random damping forcing
uncorrelated with the momentum integral.

This random damping is overall rather ineffective compared
to the correlated damping at the earlier stages of transition, so
the pace of decay of oscillations of the turbulent flow integrals
decreases. The only principal difference compared to the laminar
flow case is the noisiness of the v data which is apparently a
result of the turbulent character of the flow and limited averaging
domain size.

This noisiness of the surface stress data in the case of turbulent
Prandtl flow to a great extent obscures the correlation between t
and I, additionally illustrated in Figure 5 (it may be considered
a counterpart of Figure 3). One may clearly see, however, that
the overall tendency of the t versus I, change with time points
to the weakening correlation between the surface stress and the
flow integral in the course of transition. At sufficiently large times
(magenta points and line in Figure 5), the average T remains
essentially constant and does not depend on I,,. We thus infer
that the progressive weakening of damping of en masse flow
oscillations is apparently also a feature of a turbulent Prandtl flow
started from rest.
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