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ABSTRACT

The paper presents an extended theoretical background for applied modeling of the atmospheric convective
boundary layer within the so-called zero-order jump approach, which implies vertical homogeneity of meteo-
rological fields in the bulk of convective boundary layer (CBL) and zero-order discontinuities of variables at
the interfaces of the layer.

The zero-order jump model equations for the most typical cases of CBL are derived. The models of nonsteady,
horizontally homogeneous CBL with and without shear, extensively studied in the past with the aid of zero-
order jump models, are shown to be particular cases of the general zero-order jump theoretical framework. The
integral budgets of momentum and heat are considered for different types of dry CBL. The profiles of vertical
turbulent fluxes are presented and analyzed. The general version of the equation of CBL depth growth rate
(entrainment rate equation) is obtained by the integration of the turbulence kinetic energy balance equation,
invoking basic assumptions of the zero-order parameterizations of the CBL vertical structure. The problems of
parameterizing the turbulence vertical structure and closure of the entrainment rate equation for specific cases
of CBL are discussed. A parameterization scheme for the horizontal turbulent exchange in zero-order jump
models of CBL is proposed. The developed theory is generalized for the case of CBL over irregular terrain.
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Modeling the Atmeospheric Convective Boundary Layer within a Zero-Order

1. Introduction

Convective boundary layer (CBL) developing in the
daytime over a heated underlying surface constitutes
a substantial period in the diurnal evolution of atmo-
spheric planetary boundary layer (Stull 1988). The
principal feature of CBL is strong turbulent mixing
occupying the main portion of the layer in the vertical,
The turbulence in CBL is primarily of convective or-
igin; therefore, convection is the dominant mechanism
defining the structure of the layer. Over the heated sur-
face, the thermals of warm air are created, which ef-
fectively transport heat upward. Rising thermals inter-
act with the ambient air, loosing their potential energy.
Downdrafts represent another part of convective cir-
culation. They are cooler and weaker than thermals
but usually have larger scales in the horizontal. The
composition of updrafts and downdrafts in CBL pro-
vides for intensive mixing and uniformity of vertical
distributions of physical substances. The core of the
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convective layer, where horizontally averaged meteo-
rological variables like potential temperature, specific
humidity, and wind velocity are nearly height constant,
is commonly called the mixed layer. This layer is sep-
arated from the underlying surface by relatively shallow
surface layer within which meteorological variables
vary sharply from their near-surface values to the
mixed-layer ones. Above the mixed layer, the entrain-
ment zone, which is also called the entrainment layer,
or the inversion layer, or the interfacial layer, is located.
Within this layer, the energy of thermals is expended
for their penetration into the stably stratified atmo-
spheric air aloft and mixing (entraining ) it downward,
The structure of the free atmosphere is characterized
by stable density stratification. Entrainment of the free-
atmosphere air is accompanied, therefore, by the
downward transport of heat from the free atmosphere
to the mixed layer. Thus, one of the definitions of the
entrainment zone is the range of heights with negative
kinematic heat flux. Typically, the entrainment layer
is characterized by strong vertical gradients of hori-
zontally averaged meteorological variables. Its depth is
quite variable, but usually smaller than the depth of
the mixed layer. Toward the top of the entrainment
zone, turbulence decays and turbulent transport be-
comes negligible. Entrainment of more buoyant air into
the mixed layer leads to the increase of CBL depth.
The wind shear plays a secondary role in CBL, con-
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tributing to turbulence generation in the regions with
sharp velocity gradients: in the surface layer and in the
entrainment zone.

Model studies of the CBL passed through several
historical stages. CBL was most thoroughly studied
within the so-called zero-order jump approach initiated
by the pioneer works of Ball (1960) and Lilly (1968).
A zero-order jump parameterization for the vertical
structure of the convective boundary layer is presented
in Fig. 1. It is based on the observed features of vertical
distributions of meteorological variables in CBL, dis-
cussed above. During the convection and deepening
of CBL the potential temperature within the layer is
presumed to be height constant. Its changes with height
in the surface layer, and at the top of CBL, in the en-
trainment layer, are reduced to the zero-order discon-
tinuities of temperature profile. Thus, within the zero-
order approach the CBL is represented by the mixed
layer with two interfaces, upper (at z = /) and lower
(at z = 0), across which the potential temperature
changes in a jumplike way.

The analogous parameterization is employed for the
wind velocity profile (Garrat et al. 1982). The velocity
is taken to be height constant within the mixed layer.
At the mixed-layer upper interface it changes abruptly
to the free-atmosphere value. The sharp increase of
velocity with height in the surface layer is also repre-
sented by step in the profile. The vertical structure of
the velocity and temperature fields in the stably strat-
ified free-atmosphere layer above CBL is assumed to
be known.

The breakthrough in the zero-order jump modeling
of CBL took place in the 1970s when Betts (1973),
Carson (1973), Tennekes (1973), Stull (1973,
1976a,b), Carson and Smith (1974), Zilitinkevich
(1975a), and Zeman and Tennekes (1977) used the
zero-order jump approach to describe the evolution
and energetics of one-dimensional shear-free CBL.
Later Zilitinkevich (1991) suggested a generalized
model for this type of CBL, comprising aforementioned
ones as the asymptotic cases. Several applied models
for purposes of mesometeorological studies, for ex-
ample, those of Kraus and Leslie (1982), Brutsaert
(1987), Batchvarova and Gryning (1991), and Zili-
tinkevich et al. (1992), were developed based on the
zero-order parameterization of the CBL vertical struc-
ture. Most of those models dealt with horizontally ho-
mogeneous CBL and used simplifying assumptions
concerning the effects of wind shear.

Trying to reproduce the characteristic features of
CBL in a more detailed way, higher-order bulk models
of CBL were proposed. In the first-order jump model,
Betts (1974) introduced the interfacial layer of finite
thickness between the mixed layer and free atmosphere.
Potential temperature profile was taken to be linear in
this layer, undergoing first-order discontinuities at its
upper and lower boundaries. The general-structure
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FIG. 1. Actual (dashed lines) and parameterized (solid lines) profiles
of wind velocity ¥ and potential temperature ¢ in the CBL; §; is the
near-surface value of 8.

CBL bulk models of Deardorff (1979), and Fedorovich
and Mironov ( 1995) provide for realistic representation
of temperature~buoyancy profile in the entrainment
zone, accounting for nonstationarity of the zone and
self-similarity of its buoyant structure. All mentioned
models of higher orders were designed for shear-free
cases of CBL.

Within the last decade, the attention of modelers
dealing with CBL switched almost completely to large-
eddy simulations (LES) of atmospheric convection.
Though the first activities in this area were at the be-
ginning of the 1970s when Deardorff (1970a, 1972,
1974) performed his first numerical experiments on
LES of convection, the progress was slow because of
limited computing power and capacity of data storage
devices. During the last 10 years the situation has im-
proved, and significant results in LES studies of the
CBL have been achieved by Moeng (1984, 1986,
1987), Nieuwstadt and Brost (1986), Moeng and
Wyngaard (1988), Mason (1989), Schmidt and Schu-
mann (1989), Nieuwstadt (1990), and Schumann and
Moeng (1991), to be mentioned in the first turn. Dif-
ferent types of CBL and various features of its structure
were investigated. The results of the comparison of the
four best known LES codes applied to a particular case
of shear-free CBL were discussed in Nieuwstadt et al.
(1993). Combined effects of wind shear and buoyancy
forces in the atmospheric boundary layer have been
studied by Moeng and Sullivan (1994). A review of
the LES technique has been presented recently by Ma-
son (1994).

Nevertheless, being a very valuable and efficient tool
for the fundamental studies of CBL, and possessing the
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abilities of high-resolution measurements in reproduc-
ing the fine structure of the flow, the LES technique at
present can hardly be used in applied CBL models due
to the enormous computer resources it needs. The
prospects of employment of higher-order bulk models
for the same purpose also seem to be quite doubtful,
because none of the existing models of this kind are
suitable for incorporating meteorological forcings other
than of pure convective origin. This explains why the
zero-order jump modeling continues to be a popular
approach in applied studies of CBL.

The theoretical background of this the zero-order
jump modeling was developed only for a few cases of
CBL. The shear-free CBL is one of them. For horizon-
tally homogeneous CBL with wind shear, quite a few
parameterizations have been proposed (Stull 1988).
The effects of baroclinicity (thermal wind ), advection,
and horizontal diffusion, which can be important in
CBL under certain conditions, were also left beyond
the framework of previous model considerations. The
idea of the present paper is to develop a unified theo-
retical basis for applied zero-order jump modeling of
CBL to account for all these factors. The general forms
of CBL momentum and heat budget equations (section
2), expressions of vertical turbulent flux profiles (sec-
tion 3), and the entrainment rate equation (section 4)
will be derived. In section 5 the typical cases of CBL
together with alterations of theory will be considered,
and problems of determination of the integral param-
eters of turbulent regime for particular cases of CBL
will be discussed. A parameterization of horizontal
turbulent diffusion in a zero-order jump model for the
spatially nonhomogeneous CBL will be suggested in
section 6. In section 7 the ways of prescribing values
of external parameters, and of practical implementa-
tion of the developed theory, will be outlined.

2. Integral budgets of momentum and heat in the
convective boundary layer

The following initial equations written in the Reyn-
olds form will be used to describe the flow in the non-
stationary, horizontally nonhomogeneous CBL.

The momentum balance equations

du , ou | oo owu
ot ox ady daz
oty
=f(U“Ugo"PuZ)+?9?, (1)
w0 w
o ox ay 0z
=_f(u_'ug0_ruz)+%, (2)

where u, v, and w are the components of mean wind
velocity along axes x, y, and z, respectively; 7,
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= —({w'u'y and 7, = —{w'v") are components of the
turbulent shear stress normalized by density, the angle
brackets denote the operation of Reynolds averaging;
fis the Coriolis parameter; and u, and v, are the
near-surface values of the geostrophic wind compo-
nents, where T, and T, are the vertical gradients of
these components. The last four characteristics are
presumed to be given functions of time and horizontal
coordinates. In section 7 we shall show the simplest
method for determining them from pressure and tem-
perature spatial distributions. It is assumed in Egs. (1)
and (2) that contributions of the horizontal shear to
the momentum balance are negligible compared to the
effects of the vertical shear, and conditions of hydro-
static equilibrium in CBL are satisfied (Qi et al. 1994).
These assumptions are quite reasonable when hori-
zontal scales in the flow dominate over the vertical
ones, which is typical for the majority of convective
boundary layer cases observed in nature and simulated
in the laboratory. Nevertheless, it will be shown later
how the effects of horizontal turbulent diffusion can
be accounted for within the zero-order jump model
approach.

The mass conservation equation is employed in the
form

ou ov ow
ax oyt (3)
The heat transfer equation
a0 dubd Jvd Iwl Q
— — —— + — e —
ot * dx + dy 9z z”’ )

where 8 is the mean potential temperature and Q
= (w'8) is the turbulent kinematic heat flux, implies
that advection and vertical turbulent transport of heat
dominate over its transfer by horizontal turbulent fluc-
tuations; this assumption is analogous to the one used
in momentum balance equations. We also neglect the
contributions of molecular and radiative heat transfer
to the heat balance of CBL. The first one is very small
in the atmosphere compared to turbulent heat transfer.
The radiation effects are omitted for simplicity. Prin-
cipally, they can be incorporated in the zero-order jump
model of CBL, as is done, for instance, in Zilitinkevich
et al. (1992).

The above equations represent the general case of
the convective boundary layer over the flat underlying
surface. To obtain the equations of the momentum
and heat budget of the layer, we integrate Eqs. (1),
(2), and (4) over the boundary layer depth, that is,
over z from 0 to A, taking into account the zero-order
jump representations of the temperature and velocity
profiles (see Fig. 1). Integrating the equations, we shall
be including the zero-order discontinuity surface in the
integration domain, thus regarding the upper side of
this surface as the CBL edge.
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Calculating the integrals from each term of the first
equation of motion, we come to the equation of the
integral budget of momentum along the x axis (see
appendix A),

_ou )
+7—

H 224 722
at ax dy

Dh _ h
=AuE-I-h[f(v_ng)_Efru]_sz’ (5)
where # is the average value of the x component of
wind velocity within the mixed layer; Au = u, — # is
the increment of this component across the mixed-
layer upper interface; u, is the value of u in the stable
layer, at the upper side of the interface represented by
the surface of zero-order discontinuity; Dh/Dt = dh/
ot + 0uh/dx + dvh/dy is the substantial (total) vari-
ation of 4. The operation of averaging over the mixed-
layer depth is defined hereas () = h~" [F( )dz.

The variation DA/ Dt represents, actually, the com-
bined effect of three factors determining the evolution
of the CBL depth. The first of them, d4/d¢, is associated
with local changes of # (nonstationarity). Horizon-
tal advection by mean wind, which is the second
factor, contributes to the variation by #(dh/dx)
+ ©(dh/dy). The third mechanism is the subsidence
related to the horizontal divergence of the flow in CBL
(Stull 1988), which gives A[(di/dx) + (8D/dy)]
= —wy,, where wy, is the subsidence velocity at the
CBL top. It can be seen from the expression of vertical
velocity at z = h [Eq. (AS) of appendix A] that wy,
constitutes a part of wy,.

Integration procedures analogous to that given in
appendix A can be applied to the second equation of
motion (2), and to the heat balance equation (4). In
the first case, the result is the equation of the momen-
tum balance along the y axis:
h(éq K _ov +3 av)

ar ox ay

Integration of Eq. (4) gives the expression of the integral
budget of heat in the convective boundary layer

9 _o00 _ab Dh

—tid—+D—|=A0—
h(az i ”ay) AT+ 0 (D)

where Qs is the near-surface value of the kinematic
heat flux. The notation in Egs. (6) and (7) corresponds
to that introduced in Eq. (5).

So far, we shall consider Q;, as well as the compo-
nents of the near-surface shear stress, 7,; and 7, to be
known functions of time and horizontal coordinates.
Below, in section 7, some approaches toward specifying
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these characteristics in the zero-order jump models of
the convective boundary layer will be presented.

3. Profiles of turbulent fluxes

The expressions of the momentum and heat flux
profiles are derived by integrating Egs. (1), (2), and
(4) over the vertical coordinate from 0 to z. From Eq.
(1), we have for the x component of the momentum
flux

T T o\ ex

dvu
—— + —_
dy oz )dz

- J:f(v — Vgo — FDZ)dZ.

Using the assumptions concerning the shape of the
velocity profile in the simulated CBL, and evaluating
w by the integration of the continuity equation from
0 to z, it is easy to show that 7, is the quadratic function

of height:
Y.
dy

+ Z[f(t‘) ~v0) +2 /T,

ou _ou
Ty = Tys + 2 -a—t+ua

which can be written, using the following substitution
[see Eq. (5)]:

o o oa
at dx ay
Au Dh _ h T xs
=—— - —=fTy,——=,
n Dt TSP T T3 ST
in the form

2
Tx=7'xs(l_§)+Au‘9D_I:§‘+h7va§-(§_l)’ (8)

where { = z/h is the dimensionless height.
Similarly, the expressions of the y component of the
momentum flux

2
Ty =11 — r)+Av%f—;—%frus°(f— D, (9

and the heat flux profile

Dh
Dt
as functions of dimensionless height, can be obtained.
It is seen from (10) that kinematic heat flux in the
simulated CBL is linear with height.

Equations (8), (9), and (10) show that both com-
ponents of the momentum flux, as well as the heat
flux, undergo the discontinuities at the mixed-layer in-

0=0(1~-{)— A0 —, (10)
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terface. Just below this surface they reach the values
Au(Dh/Dt), Av(Dh/Dt), and —A8(Dh/Dt), respec-
tively. From the upper side of the discontinuity surface
all turbulent fluxes are equal to zero.

4. Entrainment rate equation

Depth of the convective layer / is one of the most
important variables characterizing the process of con-
vection. Due to the penetration of thermals into the
stably stratified flow above the mixed layer, the heat
and momentum from the stable region are entrained,
or mixed down, into the bulk of the turbulized con-
vective layer. Its depth is growing with convection. To
describe the variations of 4 in time and space, we shall
depart from the turbulent kinetic energy (TKE) bal-
ance equation. In the case under consideration, it has
the form

6e 6ue 6ve <_9_w_e
o 6y az
du o
TX5;+Tya Q———e, (11)

where e is the turbulence kinetic energy per unit mass,
e 1s its dissipation rate, and & is the vertical transport
of kinetic energy due to turbulent exchange and pres-
sure fluctuations.

To obtain the entrainment rate equation, we inte-
grate Eq. (11) over z from 0 to A.

The integration of the left-hand side, representing
the temporal variations of e, and its transformations
due to advection, yields

Be due 6vev we
ot e e dz
ox az
i) i)

0
—aeh+a—euh+a—5)evh

While deriving the above expression, we set ¢, = 0,
since it is assumed that turbulence vanishes at z = 4.

The integration of the shear production terms in the
right-hand side of (11) cannot be carried out directly,
because we have to integrate the products of the shear
stress components (which are discontinuous at z = 4)
and vertical derivatives of the velocity components.
(They are infinite at z = 0 and z = 4 within the frame-
work of parameterization used.) The following inte-
gration approach can be used. (We shall consider it by
the example of the first term. )

We isolate in the vicinity of 4 a thin layer with depth
6h. Then we approximate velocity derivative within
this layer by Au/dh, and the increment of the x com-
ponent of the shear stress by the linear function
Au(Dh/Dt)(h — z/6h), multiply them, and carry out
the integration over the layer &h. This yields
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0.5Au?(Dh/Dr), the value of the integral being inde-
pendent on 6. Therefore, it holds true when 64 tends
to zero. Calculating the integral over the rest of the
mixed layer we should take into account that velocity
is constant with height in the bulk of the layer; there-
fore, there is no shear production of turbulent kinetic
energy in this region. The contribution of the shear in
the thin near-surface layer where velocity sharply in-
creases from zero to the value characteristic of the
mixed layer, and shear stress variation with height is
negligibly small, can be evaluated with a method anal-
ogous to that used in the vicinity of 4. It is easy to
show that such integration results in #r,,.

Thus, for the integral shear production of TKE we
obtain

h du v
J;( x5, -!-Tya )dz

= UTys + U7y

1 Dh
+ = (Au? + Av?) —.
y (ou ) Di

The integral production of the TKE by the buoyancy

forces is expressed as
h
[ podz - 62 (Qs—AaD—f)

We assume that there is no transport of energy
through the underlying surface. Therefore, the integral
of the transport term yields — ®;, the negative flux of
energy from the CBL top, associated presumably with
the wavy motions since the decay of turbulence at z
= h is postulated in the zero-order jump model (Zili-
tinkevich 1991). It was noted by Stull (1976c¢) that for
typical atmospheric conditions the energy drain from
the boundary layer top due to radiation of waves is
relatively small. On the other hand, Fedorovich and
Mironov (1995) discovered the pronounced effect of
wave transport in the evolving CBL for the cases when
the Richardson number Riy = 0.5(8Q,) %/°h*/*N?,
characterizing the interaction between the growing CBL
and turbulence-free stably stratified layer aloft (N is
the buoyancy frequency within it), was in the range
from 20 to 100. These Riy values should be regarded
as quite normal for the atmospheric conditions, as one
may conclude from considerations of Schmidt and
Schumann (1989), who aimed to reproduce a realistic
atmospheric convective situation.

Summarizing the above expressions of the different
components of the integral TKE balance, we come to
the entrainment equation
[e——(Au + Av? - BhAf))]—D—h + (6e goe

ot ox

9
+va—;———Qs+e) = W7y + Dry — By (12)
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To solve this equation, one should specify the way
of evaluating the mixed-layer means € and ¢, and cal-
culating the transport of energy at the mixed-layer top,
&,. Within the zero-order approach these variables are
commonly determined using parameterizations based
on the similarity arguments. Below, while discussing
the particular cases of the convective boundary layer,
we shall consider some of them. Still, a similarity theory
that allows the determination of the above character-
istics in the general case has not yet been developed.

5. Particular cases of convective boundary layer
a. Nonsteady shear-free convective boundary layer

This case, characterized by the absence of the shear
turbulence, and mean transport, is usually the subject
of laboratory experiments in water tanks. In the at-
mosphere and in the ocean, this type of boundary layer
is observed when the buoyant turbulence ultimately
dominates over the shear one, which happens in the
atmosphere, for example, during strong radiative heat-
ing of the underlying surface, accompanied by light
wind velocities. In this case, the budget of momentum
drops off the consideration, and the equation of the
heat budget (7) acquires the form

h @ — Af ﬂl‘ = st

dt at

where 8 is the mean value of temperature within the
mixed layer, Q; is the near-surface value of the tur-
bulent heat flux, # = A(¢) is the convective layer depth,
Af = @, — 6 is the temperature increment across the
mixed-layer upper interface, and 6, is the temperature
value in the stable layer, at the upper side of the inter-
face.

The heat flux profile (10) in this case keeps the linear
form and is presented by the expression

z z dh
Q—Qs(l—z)—zm}z.

At the top of the mixed layer, the kinematic heat
flux has the zero-order discontinuity, being equal to
— AB(dh/dt) beneath the mixed-layer interface, and 0
above it.

For this type of convective layer the entrainment
rate equation (12) reduces to the form

5, BhAG) dh
2 )

(13)

(14)

de
+ (E-l—E—ng)h =—&,. (15)

The most widely used parameterizations for € and
€, corresponding to the case, are based on the Dear-
dorff’s (1970) hypothesis of self-similarity, stating that
profiles of e and ¢, being normalized using 4 as the
height scale, and w, = (8Qs#)'/? as the velocity scale,
are universal functions of dimensionless height { = z/hA.
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This allows representations: é = C.(8Qsh)*'? for the
mean value of TKE, and € = C8Q; for the mean dis-
sipation rate, where C, and C, are universal constants.
Based on the data of laboratory and atmospheric mea-
surements, Zilitinkevich (1991 ) found these constants
to be 0.5 and 0.4, respectively. The later analysis by
Fedorovich and Mironov (1995), for which they em-
ployed additionally the data of LES, has shown that
these estimates are exaggerated approximately by 25%
due to the disturbing presence of shear during field
measurements and contribution of horizontal velocity
fluctuations in the laboratory tank, induced by the
large-scale bottom temperature variations in the hor-
izontal.

For the vertical transport of energy from the CBL
top, the two most known parameterizations were sug-
gested so far, the first of Kantha (1977), and the second
of Zilitinkevich (1991), both based on the relationship
of Thorpe (1973), who expressed the energy drain from
the mixed layer through the parameters of the waves
propagating in the nonturbulent fluid aloft the layer.
Parameterization of Kantha, being accompanied by the
geometric formula of Stull (1976b), relating the so-
called entrainment coefficient 4 = Q5! A8(dh/dt) to
the ratio (A#/2)(h — Ah/2)!, where A# is the en-
trainment zone depth, results in

A 2
&, = CyN3n3
ho N (1+A)’

whereas Zilitinkevich’s parameterization gives

A 3
®, = CWN3h3 [ ——) .
b= =N (1+A)

In the above expressions, Cy and C) are dimen-
sionless constants. Zilitinkevich (1991) estimated Cly
to be about 0.02. From the experiments with general-
structure CBL model, Fedorovich and Mironov (1995)
found that the value of Cy is about one order of mag-
nitude smaller than C'y.

b. Nonsteady horizontally horﬁogeneous convective
boundary layer with wind shear

This type of CBL is typical for the atmospheric con-
ditions when horizontal variations of the boundary
layer structure are negligibly small, but the flow velocity
shear contributes to the turbulence production. For
the budgets of the momentum components, we obtain
from Eqgs. (5) and (6)

du dh _ T,h
hz*AuE—fh(D—vgo—T) Tes, (16)
do dh _ r.h

hE—ADE= "fh(u_ugo_T)"‘Tys- (17)

The equation of the heat budget in this case has the
same form as it has in the shear-free case, see Eq. (13).
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The profiles of the turbulent fluxes are expressed as
follows:

z z dh
TX-TXS(] —'Z)-I--};Auz

STy 52(z
ez o0)

h dt
SLuypz (2
Lez(oa). o
z z dh
Q—Qs(l—z)—-};ABE. (20)

As can be seen from Egs. (18) and (19), in the case
considered, the components of shear stress are qua-
dratic functions of height. At the mixed-layer top the
increments of the momentum flux components are
Au(dh/dt) and Av(dh/dt), while the discontinuity of
the heat flux has the same value as in the shear-free
case: —AO(dh/drt).

The equation describing the temporal variations of
the convective boundary layer depth / is obtained from
the general-case entrainment equation (12) by ne-
glecting the terms responsible for the spatial variations
of the boundatry layer characteristics:

'_.1_ 2 2 _ ih_
[e 2(Au + Av BhAB)] &
de B 2\, - -
+(E 2Qs+e)h—u7'x5+vrys .. (21)

To close the problem, it is still left to define the way
of parameterizing the energy flux at the mixed-layer
top, ®,, and the characteristics of the turbulent regime,
eand €.

For ®, in the case with shear, no parameterizations
have been proposed yet. To use Kantha’s (1977) or Zil-
itinkevich’s (1991 ) formulations, one has to determine
the value of the entrainment-zone depth A/, which can-
not be done in this case as easily as in the model of shear-
free CBL because geometric formula does not work any
more. One of possible solutions is to use the diagnostic
relationship between the normalized entrainment zone
depth Ak/h and dimensionless parameter of entrainment
Rig = BAO(dh/dt)2h, suggested by Gryning and Batch-
varova (1994) and utilized later in their applied model
for the height of the daytime mixed layer and the en-
trainment zone (Batchvarova and Gryning 1994): Ah/
h=33Riz'/*+0.2.

In the applied models of CBL, based on bulk approach,
the TKE balance equation is employed usually in sta-
tionary form (Stull 1976a; Zilitinkevich et al. 1992;
Gryning and Batchvarova 1994). As seen from Eqs. (11)
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and (21), this removes the problem of parameterizing &,
but leaves open the problem of defining appropriate scales
to evaluate mean dissipationrate. In most cases, ¢ is set
merely equal to a combination of components of TKE
integral production, each taken with empirical coefficient
of proportionality (Stull 1976a; Tennekes and Driedonks
1981; Driedonks 1982; Driedonks and Tennekes 1984;
Batchvarova and Gryning 1991). The shear forcings in
these models are parameterizedin terms of u3 (at the
CBL bottom), and of (AF)? (at the upper interface),
whereu, = (72, + 72)!/?is the friction velocity, and AV
is the wind shear across the top of CBL. The direct in-
tegration of the TKE balance equation, invoking the as-
sumptions of zero-order jump approach, see (21), yields
quite different expressions of shear production: i
+ 97, (at the surface), and 0.5(Au? + Av?)dh/dt (at
the mixed-layer top). Generally, it is not so evident even
for average conditionswhether 7, + 7y can be taken
proportional to #3, and 0.5(Au? + Av?)dh/dt to (AV)3.
It is easy to notice also that the first of the last two terms
always remains positive during the convection, whereas
the second has the sign of AV and thus can be a source
of negative production of TKE, which is physically
senseless.

¢. Atmospheric convective boundary layer over the
irregular terrain

Under realistic atmospheric conditions, the con-
vective boundary layer develops over irregular un-
derlying surfaces whose topography and aerodyn-
amic properties vary in space. If these variations are
not very sharp, it is possible to generalize the above
theory for the case when the upper interface of CBL
is a function of time and horizontal coordinates: A
= h(t, x, y), and the lower interface is represented
by some known function describing the topography:
H = H(x, y) (see Fig. 2).

The initial equations for the case under consideration
differ slightly from the basic equations (1)-(4) rep-

z

Free Atmosphere
h(tx.)

Convective
Boundary
Layer

—y WY
H (x‘}’) 0‘

FIG. 2. Schematic of the atmospheric CBL over the irregular terrain.
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resenting the general case of the boundary layer over
the flat surface. We still assume that mass consistency
and heat balance can be expressed using the relation-
ships (3) and (4), respectively. In the momentum bal-
ance equations, the first terms in the right-hand sides
have to be modified in the following way [cf. the cor-
responding terms of Egs. (1) and (2)]:

S1v — v — T'u(z — H)],
_f[u — Ugo — Tu(z— H)]a

since now the near-surface values of the geostrophic
wind are prescribed at the level H(x, y). Functions T,
and T, become the internal parameters of the model.
We shall outline later the method for evaluating them
from the temperature field.

Let us transform the coordinate system, introducing
new time and space variables in the following manner:

L=t Xp=X, Yn=Y,

z - H(x,y)
h(t,x,y) — H(x,y)’
where the new variables are denoted by # subscript.

In the transformed coordinates, the first equation of
motion can be integrated over z,, see appendix B,
yielding the momentum budget equation

o on ou dh duD
D 94 452 = a2 4+ 22
(az e ”ay) (az ax

Zy =

+?g§) +D|:f(1)_ ng)_ frv] — Txs» (22)
which is very similar to Eq. (5) presenting the integral
balance of the x component of momentum in the con-
vective boundary layer over the flat surface. In Eq. (22),
D(t, x, y) = h — H is the relative CBL depth, and
averaging is defined as integration over the dimension-
less vertical coordinate.

In an analogous method, the equation of the mo-
mentum balance along the y axis

Dﬂ)+1492+vﬁ = Av i9£+——auD
y at ox
_ D
+Ty‘ —D f(u~ug0)—EfI‘,, — Tys (23)
and the integral heat balance equation
6 _a0  _ob
D(BZ +u 5)—( +v 5;))
oh auD D
AB( o ) + Qs (24)

can be obtained.
Integration of the momentum balance, and heat
transfer equations over the normalized vertical coor-
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dinate from O to z, yields the representations of the
profiles of the shear stress components and turbulent
heat flux as functions of z,,:

=5y + au( %, 9ID | @D)
Tx = Txs Zn ot ax ay n

D2
+ _E'frvzn(zn - 1)7 (25)
oh auD ovD
= Tys n +
Ty = Ty(1 — ZHAU(&: “ox 8y)
2
- _Dz—fruzn(zn - 1): (26)
oh é)uD ovD
0=0(1—-2z)— Aﬁ( o ox oy )Zw (27)

Substituting the above expressions into the TKE
balance equation (14) written in the new coordinate
system, and carrying out the termwise integration of
this equation in the method similar to that employed
in section 4, we obtain the version of the entrainment
rate equation for the convective boundary layer over
the irregular terrain:

ah ouD D
—_ + — —
[e+ (Au? + Av? BhAO)]( v 3 )
de de B
+ (at 6 + 3 Qs + e)
= @7y + D1y — By, (28)

which has a form quite similar to that of the en-
trainment rate equation for the basic case, see
Eq. (12).

6. Parameterization of horizontal turbulent diffusion

Contribution of horizontal diffusion to the momen-
tum and heat budgets of convective boundary layer
can be taken into account by adding the divergence
components of corresponding turbulent fluxes to the
right-hand sides of balance equations (1), (2), and (4).
The terms 07,,/dx and d7,,/dy appear in the first
equation of motion (1); the second equation is
complemented by d7,./dx and d7,,/dy, where 7,
= —{ujuj) are components of the turbulent flux of
momentum, normalized by density. Additional in-
fluxes of heat in the heat balance equation are expressed
as —8Q,/dx and —38Q,/dy, where Q,, = {u;8") are
the components of horizontal kinematic heat flux. As
seen from the above expressions, horizontal diffusion
plays an important part when variability of turbulent
fluxes in the horizontal is enhanced. This may occur,
for example, when the convective boundary layer de-
velops over the irregular underlying surface.
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To parameterize the horizontal diffusion, we as-
sume the values of the fluxes to be proportional to
the horizontal gradients of mean characteristics of
the flow:

Auy; a0
Tx;x,-:K‘——" Q)(_,-Z—Kﬂjé;s
"}

“ (29)

where K,,; and Kj; are the coefficients of turbulent
transfer over coordinate x; for momentum and heat,
respectively. Such relationships between fluxes and
gradients of corresponding substances are widely
used in mesoscale atmospheric modeling (see, e.g.,
Pielke 1984 ). Within the zero-order jump approach,
coeflicients K,,; and K, (turbulent diffusivities) can
be taken constant with height in the mixed layer. In
the turbulence-free layer they equal zero. With due
regard to the employed representations of velo-
city and temperature profiles this allows us to ex-
press integral contributions of horizontal diffusion
to the budgets of momentum and heat in the follow-
ing way:

haTx‘xJ K aul
0 3xj ul 8)(1
ou;\ oh 9 i,
|k, = —=—hK,,—], (30
( "’axj)haxj 6xj< Jaxj) (30)
"0y 9 [
b ax; ax; 7 Jo ax;
9\ on _ 0 o0
+ Ky ——(nK,;—]. (31
( ”’639) ax; 699( ”’6)9) Gh

It can be shown that horizontal diffusion changes
the profiles of vertical fluxes of momentum and heat
as well. If we integrate momentum and heat balance
equations from 0 to z, taking into account horizontal
diffusion terms, and make the substitutions analogous
to those we have done in the basic case (see section
3), we shall obtain additional terms in the expressions
of 7, 7,, and Q, [cf. Egs. (8)-(10)]:

Tx=1x5(1_§)+[Au(%+M %)
(32)

Ty=rys(1—f)+[A”(%+%lz %)
+Kuxg-§3—g+ uyg_z%] _%2”“;(;—1),

(33)
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8h Oih Ivh
0=00-0-|a5+ 50+ T
y
96 oh a9 oh
Kﬂxa ax+ Bya*ya—;]{ (34)

As seen from the above expressions, the profiles of
momentum flux components retain the quadratic
shapes, and kinematic heat flux is presented by linear
function, as in the case without horizontal diffusion.
The values of increments of the fluxes across the mixed-
layer interface can be obtained from the expressions
of profiles in a usual way, by setting { = 1.

We can use similar parameterization for the hori-
zontal turbulent transport of TKE. The terms describ-
ing this transport appear as addittonal two terms —9%®,./
dx — 39,/dy in the right-hand side of TKE balance
equation (11) Integrating them over z from 0 to 4,
and assuming that &, K. (0e/dx;), where K,; are
the turbulence d1ffus1v1tles for TKE, we obtain

‘f (a<1> +a<1> )dz
ay

i) e de
8x(hK” x) 3 (hKeya ) (35)

The above terms represent the direct modification -
of the TKE balance by horizontal turbulent transfer of
energy. Additional changes of turbulent regime are in-
duced by effects of horizontal diffusion on profiles of
vertical turbulent fluxes of momentum and heat, see
Egs. (32)-(34). These effects will modify the integral
shear production of TKE:

h du dv 1 5
f ( 62+Ty3 )dz UTys + U7ys + :2-[(Au

Dh 0u oh dit dh
+ Av?) = + AuKy— — + w—"|»
o) Dt UBux5x ax UKyay 6y] (36)

as well as its integral buoyant production

h Dh
J; 8Qdz = 8- (Qs—M—D—t
90 ok 36 oh
+K0xaxax ﬂy'a;g;), (37)

which can be noticed by comparing Eqs. (36) and
(37) with their counterparts for the basic case (see
section 4),

The formulations of horizontal diffusion contribu-
tions to the integral budgets of momentum and heat,
to the flux profiles representations, and to the integral
balance of TKE can be easily generalized for para-
meterizing the horizontal turbulent transfer in the
convective boundary layer over irregular terrain by re-
placing 4 by D in terms containing /4 or its horizontal
partial derivatives as multipliers (see section 5).
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The values of turbulent exchange coeflicients K.,
Ky, Koy, Koy, Kex, and K,, complement the list of model
parameters to be defined. For the purposes of the ap-
plied modeling, these coeflicients can be presumed
equal to each other, and constant in space: K, = K,
= Kix = Kyy = K., = K., = K = const. The detailed
recipes of defining coefficients of horizontal turbulent
exchange in the mesoscale models can be found in
Pielke (1984).

7. Prescribing the values of external parameters

In the atmospheric modeling, the value of the near-
surface heat flux Q, is commonly derived from the sur-
face heat balance equation, provided the methods of
evaluating the other components of the balance are
known. The simple algorithm for this purpose was
proposed in Zilitinkevich et al. (1992), which incor-
porates the expression relating # to the near-surface
value of temperature 6, and formula for calculating
the roughness parameter for temperature.

Departing from the value of Q,, and assuming that
the roughness parameter of the underlying surface rel-
ative to the wind is a given function of x and y, the
components of the near-surface shear stress in the at-
mospheric convective boundary layer, 7., and 7, can
be evaluated. In the above mentioned paper of Zili-
tinkevich et al. (1992), the following relationships be-
tween the components of the stress and the components
of velocity in the mixed layer were used:

pog Gt In(| L|zo4)

* k b
i = Vcosa,, D= Vsinay,
) a,{ h \""u
sin(a; — ay) = ? (m) 7* sgn f,

Tes = U% COSQ, Ty = UL Sinay,

where «, is the angle between the x axis and the velocity
vector V with components # and 7, a4 is the angie
between the x axis and the shear stress vector at the
surface, L = —u2(BQ,)~"! is the Monin-Obukhov
length scale, z;, is the roughness parameter relative to
wind, k£ = 0.4 is the von Karman constant, and a, and
a, are dimensionless parameters for which Zilitinkevich
(1975b) obtained estimates 1 and 3, respectively.

The above expressions constitute the closed set of
equations for determination of the components of the
near-surface momentum flux, provided Q;, i, v, and
Zo, are known.

The near-surface values of the geostrophic wind
components in the atmospheric boundary layer, #.q
and v, can be expressed through the horizontal gra-
dients of the near-surface pressure ficld p; by the well-
known formulas:
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1 ap, v 1 aps
U0 = — T 7> ST
£ Jos 9y £ Jos 0x

where p, is the near-surface density. Both p; and p, can
be evaluated from the weather forecast data, or from
the output of some larger-scale atmospheric model.

The vertical variations of the geostrophic wind are
usually related to the effects of the so-called thermal
wind, which is one of the manifestations of the baro-
clinicity in the atmosphere. In CBL, the thermal wind
appears as a result of the thermal nonuniformity of the
layer in the horizontal. Under these conditions, the
vertical gradients of the geostrophic wind components
can be represented in the first approximation as

__BH B

u 5 FD___’
f oy S ox

following traditional thermal wind relationship given,
for example, in Holton (1972), and using the CBL
bulk potential temperature values.

The theory presented in the previous sections of the
paper deals with different cases of dry CBL. To account
for the effects of air humidity in the unsaturated at-
mosphere, one should complement the model with
equation of moisture transfer. It is shown in Zilitin-
kevich et al. (1992) that within the zero-order jump
approach the forms of CBL integral humidity budget
equation, and profile of moisture turbulent flux are
analogous to their potential temperature counterparts.
In the terms of model equations, representing the
buoyancy effects, the values of potential temperature
# should be replaced by corresponding values of the
virtual potential temperature, 8, = 6(1 + 0.61g), where
g is the specific air humidity, and the buoyancy flux
taken in the form SQ + 0.61gFE, where E is the kine-
matic turbulent flux of moisture.

8. Summary

Zero-order jump approach proves to be an effective
tool for applied modeling of the atmospheric convective
boundary layer. Within this model framework a variety
of physical mechanisms determining the temporal and
spatial structure of CBL can be accounted for with lim-
ited consumption of computer resources. An advan-
tageous opportunity the zero-order jump modeling
presents for applied studies of the wind field in the
planetary boundary layer, when mass-consistent mod-
els (Dickerson 1978; Sherman 1978), used widely for
this purpose, fail to describe appropriately perturba-
tions of the velocity field induced by thermal effects
during convection. The pollutants dispersion modeling
can be noted as one more prospective area of appli-
cation of the zero-order jump approach.

In the present paper, the zero-order jump model
equations for the most typical cases of CBL were de-
rived. The models of nonsteady, horizontally homo-
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geneous CBL with and without shear, extensively stud-
ied in the past with the aid of zero-order jump models,
were shown to be particular cases of the general zero-
order jump theoretical framework. The integral budgets
of momentum and heat were considered for different
types of dry CBL. The profiles of vertical turbulent
fluxes were presented and analyzed. The general version
of the equation of CBL depth growth rate (entrainment
rate equation) was obtained by the integration of the
TKE balance equation, invoking basic assumptions of
the zero-order parameterizations of the CBL vertical
structure. The problems of parameterizing the turbu-
lence vertical structure and closure of the entrainment
rate equation for specific cases of CBL were discussed,
the parameterization scheme for the horizontal tur-
bulent exchange in zero-order jump models of CBL
was proposed, and the theory was generalized for the
case of CBL over irregular terrain.

The progress in the applied modeling of CBL within
the framework of the zero-order jump approach de-
pends essentially on the success in the studies aimed
at defining the appropriate scalings for parameteriza-
tion of CBL turbulent structure in the general case.
Large-eddy simulations of convection are expected to
provide the main information background for such
studies. Additional experiments in the laboratory
(wind-tunnel studies) and in nature are also of vital
importance for the promotion of knowledge on CBL
structure under combined effects of buoyancy and wind
shear.
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APPENDIX A
Derivation of the Momentum Budget Equation

Integration of the nonstationarity term of the first
equation of motion is performed in the following way:

hél—l z=i hudz~u?—é

o ot oz Jo "
o _ oh oh i
—a—tuh—-u;,at— Au6t+h5' (A1)

Carrying out the integration, we employed the rule of
differentiating the integrals with variable limits, since
in our case & = h(t, x, y). Applying this rule to the
other terms in the left-hand side of Eq. (1), taking into
account that the adopted representation of the velocity
profile implies uii = i7%, T = v, and using condition
u=v=w=0atz=0, we obtain
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" Quu f” , 0h
b o T ax )y WA T Mgy
oh i’
=@ -up) =+ hI= | (A2)
ox ax
h a (" oh
—vgdz=—f vudz — vy, —
o dy y Jo ay
- oh ou -
= _ —_— + —_—
(Dé — vyup) e h P (A3)
h
0
il dz = wuuy,. (A4)
o 0z

Now we can integrate the mass conservation equa-
tion (3) to find the value of vertical velocity at the
mixed-layer top as follows:

" du J"’av
wy = oéxdz oaydz

dith . dh ovh _ oh
T M Ty Ty WY

Integration of the first term in the right-hand side
of Eq. (1) yields

T.h
2

h .
J; f(v~vgo-I‘,,z)dz=fh(1’)—vgo— ) (A6)

For the last term of Eq. (1), we have

h 97,
—dz = — 7y,

o 0z (AT)

where 7, is the near-surface value of the x component
of the shear stress. It is assumed that there is no tur-
bulence at the upper side of the mixed-layer interface,
and hence we set 7,;, = 0.

APPENDIX B

Momentum Budget in CBL over the Irregular
Terrain

The relationships between the temporal and spatial
derivatives in the initial and transformed coordinate
systems are as follows:

= — = Bl
o o, otédz, o, D az,’° (BD)
2_0 om0
dx dx, Ox 9z,
o  zh+(1—z)H, 3
=— — — B2
9%, D dz,° (B2)
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8_9 %z
dy dy, 09y 90z,
_i_znhy+(l—z,,)Hyi, (B3)
ay, D 0z,
a 0z, 1
Z%m 9 (B4)

9z 9z 4z, Daz,’
where D(t, x,y)=h—H,( ) =9/t ( ) =9/,
( ), =49/dy.

Substituting the above expressions into the first of
the momentum balance equations (1), integrating the
resulting equation over z, from 0 to 1, that is, over the
normalized boundary layer depth, and taking into ac-

count the adopted representation of the velocity field,
we obtain

ou  Auh, du* 1 _ _
=" il = hx 2 __ .2 _Hx 2
o~ D T ax Tplli — )~ Ha'l
it 1
+ aiy“ + 5 U8 = vuy) — H, 5]
Wyl _ D
+T=f(v_vg0)_—2—frvs (BS5)

where the notation for the variables is equivalent to
their designations in the basic case (section 3, appendix
A), and n subscripts at ¢, x, and y are omitted hereafter
for simplicity.

The expression of the vertical velocity at the bound-
ary layer top can be derived in the usual way, by the
integration of the mass conservation equation (3). This
gives

ou v _ _
wy = —D<a + 5;) + hu, — Dt + hyv, — D,0.

(B6)

Combining the above expression with (B5), we come
to the equation of the integral momentum balance
along the x axis in CBL over the irregular terrain, that
is Eq. (22) of section 5.
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