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ABSTRACT

The paper extends Deardorff ’s general structure parameterization for a shear-free convective boundary layer.
The model suggested employs the mixed layer hypothesis that the buoyancy (which is defined as b = g(p,
— p)/ po, wWhere p is the density, p, is the reference density, and g is the acceleration due to gravity) is constant
with height within the mixed layer. The buoyancy flux zero-crossing height is taken as the mixed layer depth.
The vertical buoyancy profile within the capping inversion, where the buoyancy flux is negative due to entrain-
ment, is made dimensionless, using the buoyancy difference across the inversion and its thickness as appropriate
scales. The approach was first suggested by Kitaigorodskii and Miropolsky for the oceanic seasonal thermocline.
The authors examine the idea against the data from atmospheric measurements, laboratory experiments with
buoyancy-agitated turbulence, and large-eddy simulations.

The rate equations for the mixed layer and inversion layer depths are derived using the turbulent Kinetic energy
equation and Deardorff ’s scaling hypothesis refined to account for the inversion layer structure. The constants
of the model are evaluated from the data of atmospheric, oceanic, and laboratory measurements, and large-eddy
simulations. The causes of divergence of the estimates based on data of different origin are discussed.

The model is applied to simulate convective entrainment in laboratory experiments. A reasonable explanation
for ambiguous behavior of the entrainment zone in the experiments with a two-layer fluid is suggested. The
model is found to simulate transition regimes of convective entrainment in multilayer fluid strongly affected by
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the nonstationarity of the entrainment zone.

1. Introduction

A convective boundary layer driven by temperature
and moisture fluxes at the ground commonly develops
during daytime over land surfaces. Deepening of the
upper mixed layer in the ocean or in lakes due to sur-
face cooling and/or its salinization is one more geo-
physical example of penetrative convection. In all these
cases, growth of a convectively mixed layer occurs on
a background of stable stratification. Between the well-
mixed layer adjacent to the surface and the quiescent
layer, there is an interfacial layer with strong stable
density stratification (capping inversion in the atmo-
sphere, thermocline/halocline in the ocean). In many
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instances the buoyancy production of turbulent kinetic
energy in the convective boundary layer considerably
dominates over its production due to velocity shear, so
the layer can be taken as shear-free. The purpose of this
paper is to develop a model for the shear-free convec-
tive boundary layer with the particular emphasis on
evaluating the thickness of the interfacial layer and a
realistic representation of the buoyancy structure within
this layer.

Figure 1 shows the vertical profiles of buoyancy b
and vertical turbulent buoyancy flux B in the initially
linearly stratified fluid heated from below. The buoy-
ancy is defined here as b = g(po, — p)/po, Where p is
the density, p, is the reference density, and g is the
acceleration due to gravity. Resulting from heating, a
well-mixed layer forms in the lower part of the fluid.
This layer proves to be nearly homogeneous, so the
buoyancy can be considered as height constant. In the
near vicinity of the surface the buoyancy drops consid-
erably with height from a surface value b, to the mixed
layer value b,,. The homogeneous mixed layer is sep-
arated from the nonturbulent layer aloft (which is lin-
early stratified with the vertical buoyancy gradient db/
dz = N?, where z is the height and N is the buoyancy
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FiG. 1. Schematic pattern of the vertical profiles of buoyancy and
turbulent buoyancy flux with nonsteady penetrative convection.

frequency ) by an interfacial layer, where the buoyancy
increases sharply with height. The kinetic energy of
buoyant thermals is spent here for penetration of the
mixed-layer turbulence into the more buoyant stably
stratified fluid and for entrainment downward. The ver-
tical turbulent buoyancy flux decreases linearly with
height in the main part of the mixed layer. Its zero-
crossing height roughly defines the mixed layer depth
ho. Being negative over the interfacial layer, B reaches
a minimurn at certain level within this level and van-
ishes toward its upper boundary z = hy + Ah. Thus,
four regions can be distinguished in the fluid: the sur-
face layer (whose depth is typically very small as com-
pared to h,), the mixed layer (ML), the interfacial layer
(IL), and the nonturbulent layer. '

The convective boundary layer has been extensively
studied using the zero order jump model (Lilly 1968).
Vertical profiles of mean buoyancy and vertical buoy-
ancy flux for this model are shown in Fig. 2. The cap-
ping inversion is represented by the zero order buoy-
ancy jump Ab’ at a level z = h within the interfacial
layer and the negative buoyancy flux of entrainment B,
= —Ab'dh/dt, where t is the time. As can be seen from
the plot, the zero order buoyancy increment Ab' is not
equal to the actual buoyancy difference Ab across the
IL, and B, is not equal to the most negative flux of
entrainment. The zero order approach has been suc-
cessfully applied to predict the entrainment rate dh/dt
as related to i, Ab’, N, and the surface buoyancy flux
B;. If the quantities Ab’, N, and B, are known, any
reasonable assumption on B, closes the problem. Ball
(1960) suggested that —B,, = B,, which corresponds to
the maximum possible entrainment rate. The case of
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minimum entrainment, when Ab’ = 0 and the entrain-
ment equation has the form dh/dt = B,/(N*h), was first
discussed by Zubov (1945). This regime is referred to
as ‘‘encroachment’’ (see Carson and Smith 1974). The
intermediate cases, 0 < —B,/B, < 1, were considered
by Betts (1973), Carson (1973), Tennekes (1973), Stull
(1973), Zilitinkevich (1975), and Zeman and Tennekes
(1977), among others. The most comprehensive zero
order jump model comprising the aforementioned ones
as the asymptotic cases was suggested by Zilitinkevich
(1991). :

Based upon the experimental evidence that the buoy-
ancy increment Ab occurs over a layer of significant
thickness, Betts (1974) proposed the first-order jump
model. The model assumes that the mixed layer extends
up to the height of the most negative buoyancy flux of
entrainment, and that » and B increase linearly with
height within the interfacial layer, undergoing the first-
order discontinuities at its upper and lower boundaries
(Fig. 3). The drawbacks of the model are that the pro-
files of b and B in the interfacial layer are hardly the
linear ones in reality, and that the minimum buoyancy
flux of entrainment occurs within the IL, not at its bot-
tom. Thus, the IL thickness in the first-order jump
model, Ah’, is significantly smaller than the actual one
(Ah in Fig. 1).

The next step toward parameterization of the con-
vective boundary layer was made by Deardorff (1979),
who allowed all the negative buoyancy flux of entrain-
ment to take place within the IL. The structure of the

0 b, b, b B, 0

FIG. 2. Vertical profiles of buoyancy and buoyancy flux for the
zero order jump model. The dashed lines indicate actual profiles, and
the solid lines correspond to parameterization, where Ab’ is the dif-
ference between the value of buoyancy obtained by the linear ex-
trapolation from the nonturbulent layer down to the level z = h and
the mean buoyancy in the mixed layer.

B, B
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FiG. 3. Vertical profiles of b and B for the first-order jump model.
The dashed lines show actual profiles, and the solid lines correspond
to the parameterization, where Ak’ is the IL thickness.
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IL is described in Deardorff ’s model in a more realistic
way. The buoyancy profile is represented in the form

b=b, + FAD, (D

where F is a dimensionless function of height. After
the integration of the buoyancy transfer equation [Eq.
(5) in the next section] over the IL depth an integral
shape factor

ho+Ah
C, = AR fho Fdz @

appears in the expression for the IL buoyancy budget.
The shape factor is assumed to depend on relative strat-
ification G = N*(Ah/Ab), that is, on the square of the
ratio of N and mean buoyancy frequency in the IL,
(Ab/Ah)!'?, The empirical approximation of C,(G)
was suggested in Deardorff; however, the form of the
function F was not determined.

The model performed well in the cases of steady-
state entrainment with large-scale subsidence (dhy/dt
= dAhl/dt = dAb/dt = 0) and pseudoencroachment
(dAhl/dt = dAb/dt = 0 and G = 1), when no closure
assumption on dhy/dt or d Ah/dt is required. For un-
steady entrainment a quite arbitrary closure assumption
was made on dA/dt, which seems to be a fitting rela-
tion rather than the theoretically substantiated entrain-
ment equation. Furthermore, it does not provide for free
entrainment at N = 0 (it leads to ambiguous expression
for dAh/dt as Ab and Ak become small).

In the present paper a model for a shear-free con-
vective boundary layer is developed. A three-layer pa-
rameterization is used for the vertical buoyancy profile,
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including a buoyancy homogeneous well-mixed layer,
an interfacial entrainment layer, and a neutrally or sta-
bly stratified nonturbulent layer aloft. The entrainment
rate equation is derived on the basis of equation for
turbulent kinetic energy using the hypothesis of simi-
larity for convective boundary layers (Deardorff
1970a,b) revised to account for the interfacial layer
structure. An attempt is also made to find a reasonable
approximation for buoyancy profile within the IL, us-
ing the concept of Kitaigorodskii and Miropolsky
(1970).

Kitaigorodskii and Miropolsky introduced the tem-
perature difference across the oceanic seasonal ther-
mocline, AT, and its thickness, Ah, as the appropriate
temperature and depth scales. They found that a num-
ber of temperature profiles obtained at ocean weather
ships are fairly well represented by the universal de-
pendence of dimensionless temperature [T(z) — T,,]/
AT, where T,, is the mixed-layer temperature on di-
mensionless depth (z — hy)/ Ah. The concept was then
used to process the data from laboratory experiments
(Linden 1975; Wyatt 1978). However, it has never
been applied to the inversion capping the atmospheric
boundary layer.

Now we give an outline of the paper. In section 2
the representation of the vertical buoyancy profile and
the buoyancy budget equations are considered. The en-
trainment rate equation is derived in section 3. The
model parameters are evaluated in section 4, using at-
mospheric, oceanic, and laboratory data, and results of
large-eddy simulations. In section 5 the results of nu-
merical experiments are discussed and compared with
laboratory data.

2. Parameterization of the vertical buoyancy profile
and the buoyancy budget

We simplify the discussion by considering a hori-
zontally homogeneous boundary layer without large-
scale subsidence. Let us assume that with the devel-
opment of convection the vertical buoyancy profile
keeps the following form:

bm atOSZ$h0

by + AbF(L, G)
athosZ$h0+Ah

b, + Ab + N*(z — hy — Ah)
athy + AK < z.

3)

The quiescence of the nonturbulent layer, adopted in
the model, implies that within this layer some initial
linear buoyancy profile by(z) is conserved, and b(z, t)
= bo(z) at z = hy + Ah.

In the representation (3), F is the function of di-
mensionless coordinate { = (z — hy)/Ah and stratifi-
cation parameter G, satisfying conditions
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The parameterization (3) omits the difference be-
tween b, and the buoyancy in the thin surface layer
(Fig. 1). Its little contribution to the total buoyancy
budget can be neglected.

The evolution of the buoyancy profile (3) should
satisfy the buoyancy transfer equation

o __on .
o oz ©)

Molecular transfer plays an insignificant part in the
atmosphere and in the ocean; hence, it is neglected in
Eq. (5).

Integrating Eq. (5) over z from O to A, with due
regard to the representation (3) and taking into account
the definition of the mixed layer depth as the buoyancy
flux crossover height, B = O at z = h;, we obtain the
mixed layer buoyancy budget equation (see appendix
for details of derivation):

Flgo= =G. 4

e o 9
+ [F— GJ:) F({', G)d( + ng(—;—J; F(g', G)dC’]Ab 4

c o f°
+ [CF—(I +G)fo F(Q,G)df; - G(1 —G)—a-b—J;F(C,G)dC]Ab—T.

Equations (6) and (7) are the two ordinary differ-
ential equations for three unknowns: hy, Ak, and Ab.
An additional relation is needed to close the problem,
namely, the entrainment rate equation.

3. The entrainment rate equation

We employ the balance equation for turbulent kinetic
energy (TKE):

Oel/Ot = B — 0®/0z — ¢, (10)

where e is the turbulent energy per unit of fluid mass,
€ is its viscous dissipation rate, and & is the vertical
transport of energy.

We adopt the hypothesis of similarity of convective
regime considered, which states that the basic tur-
bulence parameters, being normalized by the length
scale hy + Ah and the velocity scale w, = [B,(ho
+ Ah)]"?*, cease to depend on time in their explicit
form and depend on it only through these scales; that
is, they become universal functions of the dimension-
less height z/(hy + Ah). Hence, the vertical profiles of
turbulent energy and its dissipation rate can be pre-
sented in the form
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d ., B,
V(o + ARy — Ab) =

0

(6)

Integration of Eq. (5) over z from 0 to h, + Ah gives
the equation of total buoyancy budget:

%{%Nz(ho + Ah)? — Ab[hy + (1 — Cb>Ah]}

=B, (7
where C,(G) = fol F(L, G)d{ is the integral shape
factor.

In accordance with (3) and (5), the vertical turbu-
lent buoyancy flux decreases linearly with height
within the mixed layer, at 0 < z < Ay

B = B,(1 — z/hy). (3)

In the interfacial layer, at hy < z < hy + Ah, its
profile has the form

C" ’ . 1 a C 1 1 Ah
B=Uo F(L, Gy —Géafonc,cwc »c]—,;Bs

dhy

dAh
4 9

Z
= 2Fe S A ?
€= <h0 n Ah) ¢

Wi F Z
T ho+ Ak \hy+ AR )
(11)

where F, and F, are the dimensionless functions satis-
fying boundary conditions F,(1) = F.(1) = 0.

The employed closure hypothesis is very similar to
the one proposed by Deardorff (1970a,b), which has
been widely used in zero order jump models. Instead
of the quite arbitrary height 4 within the limits of the
IL (usually close to the height of the buoyancy flux
minimum), we use ko + Ah, that is, the depth of the
whole turbulized zone, as an appropriate length scale.
This allows one to reduce the scatter of points in the
interfacial layer in Figs. 4 and 6, showing the data on
turbulent energy and its dissipation rate from the field
and laboratory measurements. The height # is suitable
for scaling the turbulence parameters in the major part
of the convective boundary layer, but not within the
IL (Zilitinkevich 1991). Utilization of hy + Ah de-
creases the range of empirical estimates of the uni-
versal functions for € and e precisely near the bound-
ary layer top.
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Fic. 4. Empirical dependencies of dimensionless dissipation rate
of turbulent kinetic energy, ¢/B,, on dimensionless height: (a) z/Z and
(b) z/(ho + Ah). The points are the data from measurements in the
atmospheric boundary layer (Caughey and Palmer 1979; Lenschow
et al. 1980) and in the ocean (Shay and Gregg 1986). The line is from
the Deardorff and Willis (1985) laboratory experiments. When the
profiles of turbulent buoyancy flux were not given, the depth of the
boundary layer, hy + Ah, was determined as the crossover height of
the best-fit curve.
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The distinctions between the TKE and dissipation
rate profiles from large-eddy simulations (LES) of con-
vection by different authors, originating primarily from
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the differences in the employed parameterizations for
the subgrid turbulence, were analyzed by Nieuwstadt
et al. (1993). As seen from the normalized profiles in

a
A
~~
N
1f2 1.6
b
~
=
<
+
'Qo
~’
~
N

0 0.4 0.8 12 1.6
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FiG. 5. Distribution of turbulence dissipation rate in the atmo-
spheric convective boundary layer from LES (Nieuwstadt et al.
1993): (a) z is scaled by A, and (b) z is scaled by A, + Ah. The heavy
solid line shows Mason’s (1989) results, and the solid line is from
Moeng’s (1984) simulations; calculations by Nieuwstadt and Brost
(1986) and Schmidt and Schumann (1989) are shown by dotted and
dashed lines, respectively.
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Figs. 5 and 7, the scaling based on h, + Ah does not

induce, to say the least, any additional discrepancies in
the data of LES.

10 Ah\*?
—Cll+-——] (E,+ Ey)

3 o
: Ah dc,,
=(1-2C)-2C.——-(1-2
( ) — 2C. T ( C,, + 2G dG)(
+ 2‘[@, - 2C,, — GGy, — G(1 — G) d%"’] ‘2

where E, = (B,hy) ~''3dh,/ dt is the dimensionless en-
trainment rate; Ex = (B,hy) ~!"*dAh/dt is the dimen-
sionless rate of changes of Ah; Ri, = B;*?hi>Ab is
the Richardson number based on the buoyancy in-
crement across the IL; De = B;*?h%*dB,/dt is the
nonstationarity parameter introduced in Deardorff et
al. (1980) [ following Zilitinkevich (1991) we call
it the Deardorff number]; C, F.(x)dx and
C. = f F.(x)dx are dlmensmnless constants; C,,
= fl dg [ F({', G){' is a dimensionless function
of G; and <I>(ho + Ah)is the energy flux at the bound-
ary layer top.

The energy escape from the boundary layer occurs
due to the radiation of internal gravity waves into the
stably stratified layer aloft. The maximum flux of en-
ergy expended for maintenance of propagating waves
is expressed by (Thorpe 1973)

B, = (31V3) T 'NA%, (13)

where A and \ are the amplitude and length of the
waves, respectively. In the framework of the simple
bulk approach A and \ are usually determined from the
similarity arguments.

Kantha (1977) assumed the wave amplitude to be of
the order of the IL thickness, while the wavelength is
proportional to the mixed-layer depth k. This yields

Bho + D) . (Ak
2 | B:ho ——CNRIN h

0
where Riy = B;??h3’*N? is the Richardson number
based on the buoyancy frequency in the nonturbulent
layer, and Cy is a dimensionless constant.
Zilitinkevich (1991) argued that both A and \ are of
the order of Ah, which gives

®(hy + Ah) Riz? Ah
—0 = = 14
2 B.h, = CiR he ) (14b)

2
) , (14a)

where C}, is another dimensionless constant. There is
no consensus on which expression of (14a) and (14b)
is adequate. In section 5 we will attempt to verify both
against the data from laboratory experiments.
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Using (8), (9), and (11), the termwise integration
of Eq. (10) over z from O to h, + Ah gives the follow-
ing entrainment rate equation:

Ah\? dC,,\ Ah
—};()—) +2<c,,—c;c,,,,+G2 d(;b)—Rle,,
4 AR\ P(hy + Ah)
Ri,E,—-Cfl1+=—) De-2—>—"—"
vEa =3 ( ho) e B , (12)

Thus, Egs. (6), (7), (12), and (14a) or (14b) con-
stitute a closed set. The dimensionless constants C., C,,
and Cy or C} and the shape factors C,(G) and C,,, (G)
should be determined from empirical data.

4. The model constants and empirical relations

The constants C, and C, are evaluated by integrating
the functions F, and F, in Eq. (11), obtained from mea-
surements and large-eddy simulations of convection,
over the whole turbulized zone. The estimates are given
in Table 1.

For C. the atmospheric and oceanic data give similar
values, which, however, considerably exceed the lab-
oratory and LES ones. This discrepancy is probably
due to the contribution of velocity shear into the total
energy budget, which was neither present in laboratory
conditions nor taken into account in the large-eddy sim-
ulations we consider herein. The laboratory and LES
estimates are close to each other.

For C, the atmospheric estimates diverge consider-
ably. Integration of function F, obtained with LES
gives smaller values of this constant compared to those
derived from both atmospheric and laboratory data.
Considerable difference between laboratory and LES
estimates may be explained by the contribution of hor-
izontal velocity fluctuations in the laboratory tank, in-
duced by the large-scale bottom temperature variations
in the horizontal (see discussion in Schmidt and Schu-
mann 1989). We adopt the values C. = 0.3 and C,
= (.3 as most appropriate for the shear-free case.

We know of no direct measurements of the vertical
energy flux at the IL top. Therefore, the dimensionless
constants in Eqgs. (14a) and (14b) should be estimated
by comparing theoretical and empirical entrainment
laws, that is, the dependencies of the entrainment rate
upon the Richardson numbers specified above. This can
also be a way to decide between the two expressions
for wave-related vertical energy flux.

Now we have to determine the function F(, G).
Kitaigorodskii and Miropolsky (1970) approximated
the dimensionless temperature profile in oceanic sea-
sonal thermocline by the fourth-order polynomial of {.
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FiG. 6. Empirical vertical profiles of turbulent kinetic energy. (a)
The energy is scaled by (Bh)*>, and the height is scaled by k;
(b) the scales are [B{(h, + AR)]*® and hy + Ah, respectively. The
points are the atmospheric data of Caughey and Palmer (1979) and
Lenschow et al. (1980), respectively; the line represents the labora-
tory measurements of Deardorff and Willis (1985).

Similar expressions were suggested by Linden (1975)
and Wyatt (1978) using data from laboratory experi-
ments, and by Miropolsky et al. (1970), Reshetova and
Chalikov (1977), Efimov and Tsarenko (1980), and
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Malkki and Tamsalu (1985) on the basis of field mea-
surements. However, the empirical points revealed a
wide scatter about the curves F({).

The theoretical background for the Kitaigorodskii
and Miropolsky concept was provided by Barenblatt
(1978), Turner (1978), Shapiro (1980), and Zilitink-
evich and Mironov (1992). In the case of mixed layer
deepening with a constant entrainment rate and con-

14

08

1.4

2/ (hy + Ah)

0 0.2 04 0.6 0.8

-2/3

e[ B,(h, + Ah)]

FiG. 7. Turbulent kinetic energy as a function of dimensionless
height from LES. See Fig. 5 for details.



90 JOURNAL OF THE ATMOSPHERIC SCIENCES

TABLE 1. Estimates of dimensionless constants C, and C, in the
entrainment rate equation, obtained by integration of the functions F,
and F,.

Reference C, C,

Measurements in the atmosphere

Caughey and Palmer (1979) 053 0.46

Lenschow et al. (1980) 0.48 0.31

Average from atmospheric measurements 0.51 0.38

Measurements in the ocean

Shay and Gregg (1986) 0.58 —
Laboratory experiments

Deardorff and Willis (1985) 0.34 0.42
Large-eddy simulations

Mason (1989) 0.30 0.32

Moeng (1984) 0.29 0.29

Nieuwstadt and Brost (1986) 0.28 0.25

Schmidt and Schumann (1989) 0.29 0.24

Average from large-eddy simulations 0.29 0.28

stant temperatures at the IL boundaries, temperature

profile was found to be self-similar, given by the prop-
agating wave—type solution of the heat transfer equa-
tion

or -0 oT

o 9z "oz’
where K}, is the heat conductivity. In the case of a col-
lapsing mixed layer, no theoretical explanation of the
thermocline self-similarity has been suggested so far.

The convective boundary layer corresponds to the
case of a mixed layer deepening. In fact neither entrain-
ment rate nor the temperatures at the IL boundaries are
constant in time. Yet one can expect the approximate
self-similarity of the buoyancy profile in the IL, if these
quantities vary slowly with time (Zilitinkevich and Mi-
ronov 1992).

An approximation of the function F({, G) that fits
atmospheric and laboratory data reasonably well can
be obtained from geometrical arguments. To match the
continuity conditions (4) we may represent the re-
quired function in the form of a fourth-order polyno-
mial whose coefficients should be the functions of C,
to satisfy the additional integral condition (2). This
gives the following approximation for the dimension-
less buoyancy profile:

F(,G) = (% G-—12+ 30c,,> g2
+ (28 — 4G — 60C,) (>

+ (% G-15+ 300,,)&‘2 (15)
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where the dependence of the integral shape factor C,
on the relative stratification G is to be found empiri-
cally. '

Figure 8 shows the dependence of C, on G. The
majority of C, values lie between 0.35 and 0.55. The
maximum value corresponding to the two-layer fluid
system is 0.57. Within the observed range of G varia-
tions exponential function proposed by Deardorff
(1979),

C, = 0.55 exp(—0.27G)

fits the empirical data fairly well.
According to (15), function C,,(G) in Eq. (12) is

(16)

1

10 a7

Cbb = T;_O G - + % Cb.

The empirical dependence of C,, on G is shown in
Fig. 9 together with the curve calculated from Eqgs. (16)
and (17). The scatter of points about the curves in Figs.
8 and 9 is rather small despite the different sources of
the data. This justifies the use of a simple polynomial

profile (15), at least as a first approximation.

5. Comparison with laboratory data

The model described in the previous sections as-
sumes that mean velocity shear has only a minor con-
tribution to the total energy budget. Very few atmo-
spheric data match this assumption. Shear-free pene-
trative convection was thoroughly studied in the series
of laboratory experiments by Deardorff et al. (1969,

0.7

FiG. 8. The integral shape factor C, as function of relative strati-
fication G. The open squares are laboratory data (Deardorff 1979;
Deardorff et al. 1980; Deardorff and Willis 1985); the filled squares
represent atmospheric data of Clarke et al. (1971), Chorley et al.
(1975), Batchvarova and Gryning (1991), and Gryning and Batch-
varova (1994); and the triangles depict LES results of Mason (1989)
and Schmidt and Schumann (1989). The line shows approximation
(16).
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Fi1G. 9. The dependence of dimensionless parameter C,, on relative
stratification G. Markers are the same as in Fig. 8. The curve is drawn
after Eqgs. (16) and (17).

1980; Willis and Deardorff 1974; Deardorff and Willis
1985). The most comprehensive dataset was presented
in Deardorff et al. (1980, hereafter DWS). It will be
used to test our model.

The results of laboratory experiments and model
simulations are conveniently represented in the form of
an entrainment law. A traditional way originating from
the zero order jump approach is to express the entrain-
ment rate and Richardson numbers in terms of &, as
follows:

E = (Bh)""*dh/dt, Ri, = B;?h'3Ab,

Riy = %3;2/354/31\,2‘ (18)
Our model allows us to determine % directly from the
shape of the buoyancy flux profile (9) as the height of
B minimum within the entrainment zone. In the model
runs, the variations of the bottom buoyancy flux with
time were neglected in the entrainment equation, as
they are not important in most interesting cases, in-
cluding the DWS experiments (see Zilitinkevich
1991). While solving numerically the model system,
all variables in Egs. (6), (7), and (12) were normal-
ized using B, and the initial value of the ML depth as
scales. The results of the model calculations, presented
below, are obtained with the initial value of normalized
h() = 1

The entrainment relation for a two-layer fluid (Riy
= 0), calculated by the model with initial values of Ak
= 0 and Ri, = 100, is depicted in Fig. 10. We use here
the traditional terminology, speaking about a ‘‘two-
layer fluid,”” though in reality it is a three-layer one:
mixed layer, interfacial layer, and nonturbulent neutral
layer. Within the zero order approach this is really a
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two-layer fluid because the interfacial layer is reduced
to the zero-thickness surface. The initial conditions for
normalized h, and Ab define the initial Richardson
number Ri,. Depending upon the initial Ak value, di-
mensionless entrainment rate does not reveal unique
dependence on Richardson number at the early stage
of the buoyancy profile evolution when nonstationarity
of the entrainment zone plays an important part. How-
ever, as time passes, the curves corresponding to dif-
ferent initial Ah/h, converge to a unique one showing
a quasi-equilibrium entrainment regime. The initial pe-
riod of adjustment is not illustrated in the plot.

The model predictions agree well with the data from
two-layer fluid experiments of DWS. The dependence
of E versus Ri,, shown in Fig. 10, practically coincides
with the basic relation of the zero order model, E-Ri,
= const.

If the nonturbulent layer is stably stratified, entrain-
ment law relates E to the two Richardson numbers,
Ri, and Riy. In Fig. 11 the product E-Ri, is plotted
against Riy (its initial value was set equal to 4 in the
calculations presented, at initial Ri, = 1), using two
different parameterizations for wave-related energy
flux at the boundary layer top. Dimensionless constants
Cy and Cy were estimated as the best fit to empirical
data from the DWS experiments with the linearly strat-
ified fluid.

At Riy > 1, which corresponds to strong static sta-
bility in the quiescent layer, Eq. (14a) results in the
asymptotic entrainment relation E o Rlb RlN R
while Eq. (14b) leads to E o« Ri, 'Riy ">. Both
entrainment relations were reported in llterature (Fer-
nando 1991). The overall difference between the two
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FiG. 10. Dimensionless entrainment rate E versus Richardson num-
ber Ri, for a two-layer fluid system. The model curve is shown by

the solid line; the points are from the Deardorff et al. (1980) labo-
ratory experiments.



92 JOURNAL OF THE ATMOSPHERIC SCIENCES

¢
(8]
[SS]
0.1 T T v T rrrrv T T T T rrrr
10 100 1000
Riy

FiG. 11. The product E-Ri, versus Richardson number Riy based
on the buoyancy frequency in the nonturbulent layer. The heavy solid
curve is calculated using Eq. (14a) with Cy = 0.001, and the solid
line shows the results of calculation with Eq. (14b) and Cy = 0.012;
the points are from the Deardorff et al. (1980) laboratory experiments
with a linearly stratified fluid.

parameterizations in Fig. 11 is rather small considering
the data scatter. Still, the DWS data give more evidence
to the —1/, asymptote than to the —3/4 one.

The other important characteristic of entrainment is
the ratio of the IL depth to that of the ML. Within the
framework of the zero order jump approach Ah/hy is
related to E-Ri, by the so-called geometric formula
(Stull 1976; Zilitinkevich 1991), Ah/hy, = 2E-Ri,.
The present model explicitly accounts for the nonsta-
tionarity of the entrainment zone, and, in some cases,
dependence of Ah/hy on one or another stability pa-
rameter may be very different from that of E-Ri,.

Figure 12 displays Ah/h, as function of Ri, in the
two-layer fluid system. The prescribed initial values of
these two parameters in the model run are the same as
in Fig. 10. As seen from the plot, the model predicts
Ah/hy to increase with increasing Ri,, while the DWS
data show weak inverse dependence. This fact cannot
be explamed by the zero order model that predicts Ah/
ho to increase linearly at small Ri,, approaching con-
stant at Ri, > 1. Our model allows reasonable expla-
nation of the Ah/h, behavior in the DWS experiments.

Deardorff et al. (1980, p. 54) write, ‘‘In our exper-
iments intended to treat a two-layer system, A# usually
decreased with time at first as the uppermost penetra-
tion height h, worked its way up toward the base of the
preestablished neutral layer aloft. Then I' was large.
After h, reached this height, Ah/h, increased with time
as A# and Ri, decreased and I" was small.”’ In the
present notation h, is by + Ah, and T', A6, and Ri,
correspond to N?, Ab, and Ri,, respectively.

VoL. 52, No. 1

AR/ h,

F1G. 12. Normalized entrainment layer depth Ah/h, versus Ki, in
a two-layer fluid. The curve is calculated by the present model; the
points are from the Deardorff et al. (1980) laboratory experiments.

All the foregoing means that entrainment occurs first
in a linearly stratified fluid where Ah/h, decreases
monotonically with Ri, (see Fig. 13). After the IL top
has reached the base of the neutral layer, the entrain-
ment zone evolves to achieve a quasi-equilibrium state
characteristic of a two-layer fluid, passing the transition
stage described above. At this stage of entrainment Ah/ .
h, might reveal inverse dependence on Ri,, caused by

3
~
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FiG. 13. Normalized entrainment layer depth Ah/h, versus Ri, in
a linearly stratified fluid. The curve is calculated by the present mo-
del’s (6), (7), (12), (14b); the open squares represent the DWS data
referring to a linearly stratified fluid. The DWS data from experi-
ments intended to treat a two-layer fluid system are also shown (filled
squares).
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FiG. 14. Convective boundary layer development in a three-layer
fluid. The heavy solid curve corresponds to the entrainment in a lin-
early stratified layer. The dashed curve represents the transition pe-
riod of the boundary layer development when Ah/h, adjusts to a
regime characteristic of a two-layer system. The solid line displays
quasi-equilibrium entrainment in a two-layer fluid.

adjustment of the IL to a new regime of entrainment.
This is qualitatively illustrated in Fig. 14, showing the
results of simulation of entrainment in a three-layer sys-
tem: the neutral lower layer, linearly stratified layer,
and neutral upper layer, with initial values of Ri, and
Riy being equal 1 and 25, respectively. The normalized
IL depth grows with time during the transition period
of the convective boundary layer development,
whereas the Richardson number diminishes. It is pos-
sible that the DWS measurements refer to this stage.

The model curve in Fig. 14 forms nearly the closed
loop. The similar behavior of the interdependencies of
the entrainment parameters was observed in the day-
time atmospheric boundary layer by Nelson et al.
(1989), who called this phenomenon the hysteresis of
the entrainment zone.

Another plausible explanation for inverse depen-
dence of Ah/hyon Ri, in Fig. 12 suggests that the DWS
two-layer system experiments were performed on the
background of weak stable density stratification in the
quiescent layer. The data from Table 1 of DWS indicate
that stable lapse rate was always present at the IL top,
even in the experiments intended to simulate two-layer
fluid. The Ah/hy values from these experiments are
plotted against Ri, in Fig. 13 with due regard to nonzero
values of N2. They conform fairly well with the theo-
retical curve for a linearly stratified fluid at small Ri,.

It is worth mentioning that the spread of data about
the theoretical curve in Fig. 13, obtained with the initial
values of Richardson numbers Ri, = 1 and Riy = 4, is
rather large. Equations (6), (7), and (12) indicate that
normalized entrainment layer depth is the function of
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several dimensionless parameters (dimensionless en-
trainment rate, Richardson numbers, the rate of changes
of the IL thickness). Therefore, one can hardly expect
empirical data to order well if Ah/h, is presented as a
function of the only parameter (Ri, in Fig. 13). Gryn-
ing and Batchvarova (1994) processed the data on Ah/
ho in terms of combination Rir = E~? Ri,, which they
called the entrainment Richardson number. This re-
duced the scatter of empirical points on the graph Ah/
hy versus Rip as compared to Ah/h, versus Ri,.
As follows from the above analysis, Ah/h, may be
strongly affected by the nonstationarity of the boundary
layer. This effect is not explicitly incorporated by em-
pirical dependence of Ak/hg on Ri,. The data from the
DWS experiments processed in terms of E~ Ri, are
shown in Fig. 15. Taking explicit account of E aligns
the DWS data with the theoretical predictions of the
present model.

6. Conclusions

We have presented the parameterized model for a
shear-free convective boundary layer. The model ac-
counts for the buoyancy structure in the entrainment
zone. A polynomial approximation for the buoyancy
profile within this zone was proposed. The dependence
of the profile’s integral shape factor on relative strati-
fication was verified against the measurement and LES
data.

The entrainment rate equation was derived by con-
sidering the turbulent kinetic energy budget and apply-
ing the closure hypothesis similar to that proposed by
Deardorff (1970a,b). The dimensionless constants
were evaluated by integration over the whole turbulized

A/ by
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FIG. 15. Normalized entrainment layer depth Ah/h, versus dimen-
sionless combination E~?Ri, in a linearly stratified fluid. The curve
is calculated by the present model; the markers are the same as in
Fig. 13.
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zone of the vertical profiles of turbulent kinetic energy
and its dissipation rate, made dimensionless with the
length scale hy + Ah and velocity scale wy = [B,(ho
+ Ah)]1'3. The data from atmospheric, oceanic, and
laboratory measurements were used, as well as the re-
sults of large-eddy simulations. On average, the esti-
mates using field data exceed the LES and laboratory
values. The LES data seem to be most appropriate for
the shear-free case.

Two parameterizations for the energy flux at the top
of the convective layer due to radiation of internal grav-
ity waves were tested. Equation (14b) appeared to fit
the DWS laboratory data a little better than Eq. (14a).
However, preference can hardly be given to one of
them considering the data scatter.

The model was successfully applied to simulate dif-
ferent regimes of penetrative convection observed in
the laboratory. Reasonable explanations for ambiguous
behavior of Ah/h, in the DWS experiments with the
two-layer fluid were suggested.

The model is able to reproduce the hysteresis-type
relationships between the entrainment parameters, re-
sulting from the convective boundary layer develop-
ment through consecutive transition stages in a multi-
layer fluid (Fig. 14). Such a behavior of entrainment
zone is observed in the atmosphere when the effects of
wind shear and large-scale subsidence are weak.
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APPENDIX

Derivation of the Buoyancy Budget and
Entrainment Rate Equations

To obtain the ML buoyancy budget equation (6) one
should integrate buoyancy transfer equation (5) over z
from O to hy, taking into consideration that ML depth
he is the time-dependent variable. According to the
rules of differentiating integrals with variable limits,
the transformation of the left-hand term of (5) leads to

ko 9b dhy, df""
Zdr' = bl =2+ 2| bdz. (Al
J; ot d o dr  dtdo dz’. (AD)

While representing the vertical structure of buoyancy
we assumed [see Egs. (3) and (4)] that at z = A, the
buoyancy profile is continuous. In addition, we adopted
the constancy of the buoyancy with height within the
ML. Then, the expression (Al) can be written as

VoL. 52, No. 1
ko 9b dhy d(b,hy) db,
L g = —p Ho HOnlo) DO
»[) ar ™ dt dt ho dt (A2)

From parameterization (3) and specified conservation
of buoyancy profile in the nonturbulent layer it follows
that b,, is related to Ab as b, = by|yean — Ab. The
value of buoyancy at the top of the interfacial layer can
be presented in the form by |, an = bos + N*(ho + Ah),
where by, = const is interpolated value of b, at z = 0.
Thus, the integration of 9b/dr gives

b |, d__,
. o dz' = hy o [N*(hy + Ah) — Ab]. (A3)
Integration of —3B/Jz in the right-hand part of (3)
yields B|,, — B,. The first term of this difference equals
zero due to the assumption that the level of B = 0
defines the top of the ML. Together with (A3) this
gives Eq. (6).

The buoyancy budget equation for the whole tur-
bulized zone is derived from similar considerations. In-
tegrating (5) over z from O to h, + Ah, we obtain

d(hy + Ah) _B.
dt
(A4)

d ho+Ah
— bdz' — (b, + Ab

@), 2" —( .)
Here we set B|, ., = 0, employing the fact that tur-
bulent heat flux vanishes at the upper interface of the

entrainment layer. The term with the integral in the left-
hand part of (A4) can be split in two:
d ho+Ah

d ho+Dh
bz =402t 4 [

— + FAb)dz'.
dtJo dt dtJs, (Bm ydz

(AS)

Presenting b,, in (A5) as b,, = by, + N*(hy + Ah)
— Ab, carrying out sequential integration and differ-
entiation in the second term, and substituting the result
in (A4), we come to Eq. (7). :

To derive the expression (8) of the buoyancy flux
profile in the ML, it is necessary to integrate the buoy-
ancy transfer equation (5) from O to z < hy, taking into

. account that b is constant with depth within the ML:

* 0b db
—dz' =z— = B, — B(2), Al
Nr? dz | 2 (2) (A6)
and then replace db,/dt by B,/hy, according to (A2)

and Eq. (6).

The integration of Eq. (5) from 0 to z € [hy, ho
+ Ah] gives the representation (9) of the buoyancy
flux profile in the entrainment zone.

Expressions (8) and (9) for both parts of the B pro-
file are used in the derivation of the entrainment rate
equation ( 12) by integrating the balance equation (10)
for e over z from 0 to hy + Ah. In (12) all terms are
normalized by (B/hy)/2. Taking into account the
adopted dimensionless representation of turbulent ki-
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netic energy (11), the normalized integral of Je/0t
yields

10 AR\ 4 AR\
—Cl1+==) (E,+Ey)+=Cl1+—) De.
3 Ce( h() ) ( h EA) 3 z( ho ) e

Integration of —9®/0z gives —2®(hy + Ah)/{(Bhy)
(we assume that there is no turbulent transport through
the underlying surface). Employing the nondimen-
sional form for the dissipation rate profile (11), the
integral of € results in 2C.(1 + Ah/hy). Unity in the
right-hand part of (12) appears as the result of inte-
grating B profile (8) from O to hy. The other terms in
(12) originate from the integration of the buoyancy flux
profile (9) over z from kg to hy + Ah.
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