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ABSTRACT

Several bulk model-based entrainment parameterizations for the atmospheric convective boundary layer
(CBL) with wind shear are reviewed and tested against large-eddy simulation (LES) data to evaluate their
ability to model one of the basic integral parameters of convective entrainment—the entrainment flux ratio.
Test results indicate that many of these parameterizations fail to correctly reproduce entrainment flux in the
presence of strong shear because they underestimate the dissipation of turbulence kinetic energy (TKE)
produced by shear in the entrainment zone. It is also found that surface shear generation of TKE may be
neglected in the entrainment parameterization because it is largely balanced by dissipation. However, the
surface friction has an indirect effect on the entrainment through the modification of momentum distribu-
tion in the mixed layer and regulation of shear across the entrainment zone. Because of this effect, param-
eterizations that take into account the surface friction velocity but exclude entrainment zone shear may
sufficiently describe entrainment when wind shear in the free atmosphere above the CBL is small. In this
case, the surface shear acts as a proxy for the entrainment zone shear. Such parameterizations can be most
useful if applied in situations where atmospheric data are insufficient for calculating entrainment zone
shear. The importance of modeling a Richardson-number-limited, finite-depth entrainment zone is evi-
denced by the relatively accurate entrainment flux predictions by models that explicitly account for effects
of entrainment zone shear, but predictions by these models are often adversely affected by the underesti-
mation of TKE dissipation in the entrainment zone.
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1. Introduction

The daytime atmospheric convective boundary layer
(CBL) is the turbulent lower portion of the troposphere
that is in contact with the earth and whose turbulence is
primarily forced by positive fluxes of buoyancy from
the surface. The CBL development is associated with
the entrainment of free atmospheric air, from above,
into the growing CBL. In the present study, which is
divided into two parts, we are focusing on the entrain-
ment in sheared, horizontally homogeneous, dry atmo-
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spheric CBLs. Conzemius and Fedorovich (2006, here-
after Part I) investigates entrainment in sheared CBLs
as reproduced by large-eddy simulations (LES). In the
current part, our goal will be to assess the overall ability
of earlier proposed entrainment parameterizations,
based on the so-called bulk model approach (Fedoro-
vich 1998), to reproduce entrainment for the set of 24
simulated CBL cases described in Part I.

In the early studies of the atmospheric CBL entrain-
ment (Ball 1960; Lilly 1968; Betts 1973; Carson 1973;
Stull 1973; Tennekes 1973), which utilized the CBL
bulk model approach (see Part I for its description), the
contribution of shear-driven turbulence to the evolu-
tion of the CBL was neglected on the basis that it com-
prises an insignificant source of turbulence kinetic en-
ergy (TKE). In many CBL cases, this assumption is
rather well justified. Besides that, leaving the shear pro-
duction of TKE out of entrainment equations in bulk
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Fi1G. 1. Profiles of (a) buoyancy and buoyancy flux and (b) velocity in the horizontally (quasi) homogeneous CBL.
Heavy dashed lines indicate LES or atmospheric horizontally averaged profiles, and heavy solid lines indicate their

representation in the ZOM. Lighter solid lines are the lower (z;,) and upper (z

) limits of the entrainment zone.

i

The diagonal dashed line in (b) represents the profile of geostrophic wind. For changes of any variable ¢ across
the entrainment zone, 8¢ refers to the change of that variable across the entire entrainment zone, and A¢ refers

to the change of that variable in the ZOM.

models greatly simplifies those equations, and even in
this simplified form, they often describe CBL entrain-
ment rather well. However, a purely shear-free CBL
rarely exists in the atmosphere and, when the surface
buoyancy flux is relatively weak and the wind shear is
relatively strong, the shear effects in the CBL become
significant and cannot be neglected (Stull 1976a.c;
Mahrt and Lenschow 1976).

Bulk model equations (or parameterizations) that
take into account the effects of shear on the TKE pro-
duction and entrainment rate in atmospheric CBLs
have been suggested in a number of CBL studies, the
first of which date back to the mid 1970s (Tennekes
1973, hereafter T73; Mahrt and Lenschow 1976, here-
after ML76; Stull 1976a,b,c, hereafter ST76; Zeman and
Tennekes 1977, hereafter ZT77; Tennekes and Drie-
donks 1981, hereafter TD81; Driedonks 1982, hereafter
D82; Boers et al. 1984, hereafter B84; Batchvarova and
Gryning 1991, 1994, hereafter BG94; Fedorovich 1995;
Pino et al. 2003, hereafter P03; Sorbjan 2004, hereafter
SR04; Kim et al. 2005, manuscript submitted to Bound.-
Layer Meteor., hereafter K05). In many cases, those
parameterizations were developed based on specific
CBL datasets. The overall number of sheared CBL
cases investigated with bulk models is relatively small,
however, and in many of them the CBL development
was ultimately dominated by the buoyancy production
of TKE. The current study seeks to test entrainment
parameterizations for CBLs in which the shear-
production of TKE is relatively strong, competing with
the buoyancy production of TKE in driving the CBL

development. Specifically, we seek to evaluate the
physical hypotheses and assumptions that underlie the
bulk model based entrainment parameterizations for
sheared CBLs and to help quantify the shear enhance-
ment of entrainment studied in Part I.

A majority of bulk approaches adopt the zero-order
model (ZOM) representation of the CBL structure
(Lilly 1968), which considers the entrainment zone
buoyancy and velocity jumps as finite discontinuities
across an infinitesimally thin interface between the con-
vectively mixed layer and the free atmosphere (Betts
1973; Carson 1973; T73; ST76; ZT77; TD81; D82; B84;
BG94; Fedorovich 1995; P03; see Fig. 1). Another
popular bulk approach is based on the first-order model
(FOM) of the CBL suggested by Betts (1974). In this
model, the velocity and buoyancy changes in the en-
trainment zone are represented by linear profiles over a
finite layer (ML76; K05). Some other studies, like
SR04, are not specific as to the type of bulk model used
but implicitly assume at least a first-order representa-
tion of the CBL structure.

These various bulk model methodologies look differ-
ently at roles played by the surface shear and entrain-
ment zone shear in the turbulence generation and evo-
lution of the CBL. For both shear types, an important
parameter appears to be the fraction of shear-
generated TKE that is spent for the entrainment of the
more buoyant free-atmospheric air versus being dissi-
pated (Price et al. 1978; Part I).

A majority of previous studies (ZT77; TD81; D82;
B84; BGY4; P03; K05) directly account for the effects of
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surface shear on entrainment. The near-surface shear
production of TKE is parameterized in terms of the
surface friction velocity u,. The integral effect of the
near-surface turbulence production is quantified
through an effective velocity scale, which is a combina-
tion of u,, and the Deardorff (1970) convective velocity
scale w,. Other authors (like ML76) exclude the sur-
face shear effects in the integral TKE budget consider-
ations, assuming that the entire surface shear-generated
TKE dissipates in the near-surface portion of the CBL
and is therefore not available for entrainment. In Part I,
it was found that the surface shear affects entrainment
only in an indirect manner, through its influence on the
mean mixed layer momentum. In the present part of
the study, the effects of surface shear will be quantified
more directly by testing the entrainment parameteriza-
tions that include the effects of surface layer shear.

In parameterizations that directly take the entrain-
ment zone shear into account (ML76; ZT77; TDS81,
D82; B84; P03; SR04), the quantification of the TKE
generated by entrainment zone shear is obtained from
the integration of the shear production term of the
TKE balance equation in the entrainment zone. The
fraction of the integral shear-generated TKE spent for
the entrainment in this case stands out clearly in the
integral TKE budget equation, much like it does in the
case of the buoyancy-generated TKE. However, unlike
the latter case in which the entrainment fraction is gen-
erally agreed to be about 0.2 (Stull 1973; Fedorovich et
al. 2004a; Part I), little direct experimental evidence
exists to support the typically assumed value of 0.7 for
the entrainment zone shear-generated TKE. As will be
shown below (see section 4), the assumption regarding
this fraction plays a particularly important role in the
ability of entrainment equations to accurately predict
the evolution of the CBL.

Another central issue regarding bulk model-based
predictions of entrainment is the order (type) of bulk
model used for representation of the CBL structure.
The ZOM is the simplest representation of the CBL
structure, and the ZOM-derived integral TKE budget
(Fedorovich 1995) expresses integral shear and buoy-
ancy production of TKE in a compact form that facili-
tates clear conceptual understanding of the processes
contributing to the entrainment. However, some au-
thors (e.g., Sullivan et al. 1998; vanZanten et al. 1999)
suggest that at least a FOM representation of the CBL
structure is necessary to capture essential features of
the CBL related to entrainment. By accounting for the
finiteness of the interfacial layer, the FOM also allows
a more direct representation of the effects of Kelvin—
Helmholtz-type instabilities in the entrainment zone of
sheared CBLs. Such instabilities are associated with
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shear in the entrainment zone, and the existence of
these instabilities appears to be dependent on a Rich-
ardson number in the entrainment zone (Kim et al.
2003; Sorbjan 2004; Part I). The exact definition of this
Richardson number is dependent upon the author, but
within the FOM approach, a concept of critical Rich-
ardson number, local to the entrainment zone, can be
employed to reflect the balance between relative buoy-
ancy and velocity changes with height at the top of a
sheared CBL (ML76). Such a balance cannot be di-
rectly represented in the ZOM and, if it is an essential
feature of entrainment, one might expect the FOM-
based entrainment equations to more accurately repro-
duce the sheared CBL evolution.

In section 2, previously proposed bulk model param-
eterizations accounting for sheared convective entrain-
ment are summarized, and derivations of the most com-
monly used parameterizations are outlined. Section 3
details the procedure used to evaluate the bulk model
parameterizations against the LES cases described in
Part I, and section 4 presents the results of those evalu-
ations. Section 5 discusses the conclusions derived from
the parameterization evaluations.

2. Background

The TKE balance equation forms the cornerstone of
most entrainment parameterizations suggested to date.
Derivation of the integral TKE balance equation for
the CBL presents an opportunity to review the assump-
tions made along the way and to show in which aspects
various entrainment parameterizations differ from one
another. For those parameterizations whose underlying
assumptions differ significantly from what we present
below (i.e., use of a higher-order model or different
mathematical formulation), we show only the resulting
equation and refer to the original publication for details
of the derivation.

a. Commonly used bulk model approaches

In the CBL bulk models, the entrainment equations
are derived assuming a horizontally homogeneous,
temporally evolving CBL flow in which the first- and
second-order turbulence statistics, obtained by averag-
ing over horizontal planes, represent ensemble-mean
profiles of corresponding meteorological quantities.
With these considerations in mind, one begins with the
Reynolds-averaged Navier-Stokes (RANS) equations
describing the CBL with horizontally averaged profiles
of buoyancy b = g/6,(6 — 6,) and horizontal velocity
components # and v as related to vertical turbulent
fluxes of buoyancy B = (g/6,))w’'0’ = w'b’ and com-
ponents of horizontal momentum, 7, = —w'u’

'u’ and
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7, = —w'v’ (Fedorovich 1995). In the above expres-
sions, g is the gravitational acceleration, 6 is potential
temperature (to be inclusive of the presence of water
vapor, 60 could refer to virtual potential temperature),
0, is the reference value of 6 (we use 6, = 300 K), w is
vertical velocity, overbars denote horizontal averages,
and primes indicate deviations from horizontal aver-
ages. From this point forward, overbars will be omitted
in the notation for the first-order moments (mean flow
values) of meteorological variables.

Under the assumptions of horizontal homogeneity,
the mean vertical velocity is zero, and the horizontal
derivatives of all quantities are also zero. This implies
that horizontal advection, as would occur in baroclinic
conditions, is also zero. Therefore, one limitation of the
bulk models, as described here, is that they do not ac-
count for differential temperature advection and verti-
cal motion that may become important in baroclinic
CBLs, as is discussed in SR04. With these assumptions,
the mean velocity components u# and v are related to
their corresponding vertical kinematic turbulent fluxes
7, and 7, and the geostrophic wind components u, and
v, through the equations describing the rate of change
of velocity:

u It

X

E—ngf(v—vg), (1)
av_ i, ,
Fyinieeial (Chag ) 2)

where fis the Coriolis parameter. If radiative fluxes and
advection are also omitted, the rate of change of the
mean buoyancy b is related only to the divergence of
the vertical buoyancy flux:

Gb_ aB

Frimiiree (3)

The equation describing the TKE e changes in the hori-
zontally homogeneous CBL is

de ou v o
Ty£+B—E—8, (4)
where ® = (w'e’ — p, 'w’p’) is the vertical transport of
TKE (p, is a reference density and p is pressure), and
is the TKE dissipation rate.

To derive equations describing the CBL integral mo-
mentum, buoyancy, and TKE budgets (1) through (4)
are vertically integrated over the depth of the CBL. To
simplify these integrations, the overall CBL structure
can be represented in a schematic form, as long as the
schematic profiles capture the essential features of the
CBL. In this section, we will review the development of
the ZOM-based entrainment equations since they are

— = —
ot oz
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the simplest and most commonly used. Figure 1 dis-
plays the ZOM representation of the CBL structure. At
the CBL top (z = z;) in the ZOM are zero-order dis-
continuities in buoyancy Ab and velocity components
Au and Av. Above the CBL, the buoyancy changes at a
linear rate of 9b/0z = N?, where N is the Brunt—Viisili
frequency. The velocity components also have a linear
dependence on height in the free atmosphere: du/dz =
I', and dv/9z = T',. In the baroclinic atmosphere, tem-
perature advection can cause N, I',,, and I, to vary with
time, but the present study is focused on barotropic or
equivalent barotropic conditions (Part I), so we take
these quantities as constants.

The full set of ZOM equations for the horizontally
homogeneous sheared CBL includes the following re-
lationships (Fedorovich 1995):

d(r, , A B r,, A 5
dt\ 2 T TRAUZ | T Ty +f 2 Z; — Av; |, ( )
d (T, , r,
E ? < AVZI =TTy T f 721 - AMZ, > (6)
d (N°z}
Zt 2 - Abzi = Bsa (7)
o L+ o
ai edz = u, 7. +v,7, + 2( u- + )

0

dz;

% +ﬁ<B—Ab@ — @
at2 B i

dt

<i

—fsdz, (8)

0

where the various terms have been defined above and
in Fig. 1. Equations (5) and (6) describe the integral
budget of momentum, Eq. (7) describes the integral
budget of buoyancy, and Eq. (8) is the integral TKE
equation. Equations (5) through (8) do not form a
closed set since the surface momentum fluxes —7,, and
—1,,, mixed layer velocity u,, and v,,, energy flux at the
CBL top ®,, and the integrals of TKE e and dissipation
e are still unknown. The first two terms on the right-
hand side of (8) represent the surface shear generation
of TKE, the third term represents the entrainment zone
shear production of TKE, and the fourth term repre-
sents the contribution of integral buoyancy flux to the
TKE budget. The latter term consists of a positive part
due to flux from the surface, B,, and a negative part due
to entrainment flux, (—Ab dz,/dt).

The derivation of the entrainment equation hinges
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on the TKE equations, (8) or (4), with some authors
(ZT77;, TD81; D82) using (4) applied locally in the en-
trainment zone and others (ST76; B84; BGY94) using the
TKE equation integrated over the CBL depth (8). Al-
though the methods of derivation and the parameter-
izations used are different, the resulting entrainment
equations are essentially the same. In the present re-
view, the integral approach is discussed.

Invoking a drag coefficient parameterization C,, =
uz/(u;, + v;,) = uz/lu, [, where uj, = (13, + 7, is the
surface friction velocity and u,, is the mixed layer ve-
locity vector (B84; Garratt 1992), the surface shear pro-
duction of TKE can be parameterized as u,, 7., + v,,7,,
= |u,,luz = Cp"?u;. Noting the definition of the Dear-
dorff (1970) convective velocity scale w,, = (B,z,)"", the
positive part of the buoyancy term can be written in
terms of w,. Also, under typical atmospheric condi-
tions, the upward energy transport from the CBL top
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can be neglected (Stull 1976b; Fedorovich et al. 2004a).
With these three changes, (8) becomes

<i

1/2 3
7 edz = Cp

0

1 dz; 1
_ 2 2 t, -3
2(Au +Av)d[+2w*

J’sdz. 9)

If one further assumes that the integral dissipation rate
of TKE consists of the sum of the dissipation of the
TKE generated by surface shear, entrainment zone
shear, and surface buoyancy flux (a hypothesis that is
difficult to test, yet it is at least implicitly made in all the
entrainment parameterizations), the integral of dissipa-
tion can be split according to individual processes con-
tributing to the TKE generation:

1 dz;
f—Abz

zZi Zi
d 1 dz; 1 dz;
- _ 12,3 - 2 2y = — w3 =
7 f edz=| Cp " u; — J e,dz | + 5 (Au~ + AvY) a J g dz | + 5> Wi f egdz Abz,, e
0 0 0
(10)
where g, €,,, and g5 are the dissipation rates of surface z

layer shear—, entrainment zone shear—, and buoyancy-
generated TKE, respectively. The brackets associate
each integral TKE production mechanism with its cor-
responding integral dissipation rate. Equation (10)
shows that the TKE consumed by entrainment can
come from any of the three production mechanisms, as
long as that TKE is neither dissipated nor taken up by
the reservoir of TKE in the CBL.

The integrals of TKE and dissipation can be simpli-
fied by selecting appropriate length and velocity scales
in the CBL, and the mathematical form of (10), as well
as physical considerations, suggest the best approach
would be to choose the same scaling parameter for the
production and dissipation of each type of TKE. For
the buoyancy-generated TKE, the obvious choice is w?.
Following Zilitinkevich (1991) [see also Eq. (6) of Fe-
dorovich et al. (2004a)], we can choose z; as the length
scale and write

Wy

= — 4.0, 1

where { = z/z; and ¢_p is a dimensionless function of
dimensionless height. When integrated over the depth
of the CBL, (11) becomes

j €p dZ = CSBW:7 (12)

0

where C,p is a universal constant, which has been
shown (Zilitinkevich 1991; Fedorovich et al. 2004a) to
have a value of about 0.4 in the shear-free CBL. Essen-
tially, (12) implies that a constant fraction of the surface
buoyancy—produced TKE is dissipated. For the surface
shear-generated TKE, the natural scale is ui, and
choosing z; as the length scale, we find that

<i

J &, dz > u;.

0

(13)

For the entrainment zone shear—generated TKE, there
is no obvious velocity scale aside from the combination
of velocity jumps and entrainment rate associated with
the entrainment zone shear production of TKE, so it is
most straightforward to assume that a constant fraction
of the shear-generated TKE in the entrainment zone is
dissipated:

zi
d A2+A2dzi

oc —

&, dz « (Au v)dl.

0

(14)



1184

This is effectively the same as what is done in (12) for
the surface shear— and buoyancy-generated TKE. Be-
cause the production and dissipation are scaled the
same way and are therefore linearly related, we can
simplify (10) and, for each production mechanism, ab-
sorb the fraction of dissipated TKE and associated con-
stants into new constants of proportionality. The inte-
gral TKE budget then becomes

S
dr | ¢4
0

where Cg is a constant associated with the surface shear
generation of TKE (the fraction of surface shear-gen-
erated TKE available for entrainment is C, = C,C 1>
C, is the fraction of entrainment zone shear—generated
TKE available for entrainment, and C, represents the
same for the buoyancy-generated TKE.

The left-hand side of (15) requires careful treatment.
Typically, the integral TKE in the CBL is scaled by the
square of a characteristic velocity scale multiplied by a
length scale. For the shear-free CBL, the scaling pa-
rameters are w, and z; (Zilitinkevich 1991), and the
left-hand side of (15) would become

dz;
= Cyu; + Cp(Au” + AUZ)E + Cwy
dz;

— Abz,— dt

(15)

d .
Ch o w2z) = Ch 5 (B = g
where C7 is the scaling constant associated with the
rate of change of integral TKE (the temporal term) and
the constants associated with the differentiation are ab-
sorbed into the constant C’. According to Zilitinkevich
(1991), Cr = 1.7.

If shear-generated TKE is also present, then addi-
tional scalings have to be introduced. The friction ve-
locity u,, may be added as a scaling parameter associ-
ated with surface layer shear—generated TKE, and per-
haps (Au? + Av®) dz/dt would be an appropriate
quantity for determination of the velocity scale associ-
ated with the entrainment zone shear—generated TKE.
To be consistent with the mathematical methodology
and physical considerations regarding the temporal
term, the choice of scaling parameters should be made
before the time derivative on left-hand side of (15) is
evaluated. Let us choose w,, .., and [(Au* + Av?) dz,/
df]'” as the velocity scales, and let A{, A}, and A} be the
respective constants of proportionality [resulting from
integration of dimensionless functions of normalized
height z/z; see Fedorovich et al. (2004a)]. Since all
three scalings include time-dependent variables, the
left-hand side of (15) becomes much more complicated:
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zZ

d d 5 5
dt edz = T Awg + Abug

23
+ Ag[(mﬁ + sz)%] / }z,—>. (17)

In particular, the resulting system of differential equa-
tions becomes second order in time.

Most authors of the previously suggested entrain-
ment parameterizations short-circuit this whole process
and simply write down the left-hand side of (15) in
terms of another velocity scale o,,, which is commonly
assumed to be a combination of w,, and u,, scales (see
below). However, such an approach may not be consis-
tent with the physical processes associated with the
temporal term; this issue will be saved for future re-
search. Using the simplified scaling, the TKE budget
equation becomes

dz
C ozj—Cuyﬁ-CP(Au +sz) +C1w*

Ab 4z 18

Zi g (18)

where C’; has been replaced by C,, which, generally
speaking, may vary in time, if the simplified scaling is
assumed. Solving for dz,/dt yields

dz; Cywi + Cu;

At Abz, + % — Cp(Al2 + AP

(19)

If we define A = C¢/C;, the numerator can be written
in terms of another combined velocity scale, w,,,, intro-
duced as w), = wl + Aul, n = 3 (note that some
authors use n = 2 in this scaling, see Table 1). Addi-
tionally, most authors assume o,, = w,, (although they
are not necessarily the same), so the entrainment equa-
tion becomes

dz; cw

At Abz, + Cyw2, — Cp(Ai? + AP)

(20)

An expression for the ZOM entrainment flux ratio
—B;y/B;, = Ab dz,;/dt is obtained through multiplying
(20) by Ab/By:

Abdz,-/dt_wf’nc L4 w2, c (Au? + AV
B, w2/ LT aby, T My, |

2

@1
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TABLE 1. Values of constants in entrainment equations.

Author A n C, Cr Cp
Tennekes (1973) 12.5 3 0.2 0 0
Zeman and Tennekes (1977) 4.6 2 Nz; 3.55 Nz;
0.5 —0.024 — 0.024
Tennekes and Driedonks (1981) 4 2 Nz; 43 0.7
0.6 —0.03 —
Driedonks (1982) 25 3 0.2 0 0
Boers et al. (1984) 23 3 0.32 0.75 1
Batchvarova and Gryning (1991, 1994) 12.5 3 0.2 0 0
Pino et al. (2003) 8 3 0.2 4 0.7
Present study 0 3 0.2 0 0.4

We can further introduce the following Richardson
numbers, which represent different buoyancy contribu-
tions to the TKE budget:

Ri Abz; . Abz; Ri Abz;
i, = , Ri,y=—5, Rigg=—5—"7"—,
oW Sh 2 ST (AP + AV
Abz;
i,=—, (22)
Uy,

where Rj, is associated with the temporal term and in-
cludes effects of surface shear, Ri,, is the same, except
it excludes shear effects, Rigg is the Richardson num-
ber associated with the entrainment zone shear, and Ri,,
is associated with the surface layer shear. Substituting
Ri, and Rigg into (20), we have

Ab dz;/dt  w;, C,
=— - — - (23)
B, w; [1+ C,;Ri; ' — CpRigs

This is the basic form of the ZOM entrainment param-
eterization used by ZT77, TDS81, D82, B84, and P03.
The main differences among their entrainment equa-
tions lie in the values of the constants used. Table 1 lists
the values of these constants for each entrainment
equation. In a study of storm-induced mixed layer
deepening in the ocean, Price et al. (1978) found Cp =
0.7, the value most commonly used in bulk parameter-
izations of entrainment. Note that the right-hand side
of (23), in the shear-free case, reduces to the constant
C,. The most commonly used value for C, is 0.2, and
the constancy of this value has been shown by Fedor-
ovich et al. (2004a) over the typical range of atmo-
spheric stratification considered in the present study,
although Sorbjan (1996a,b) found that it can vary when
the buoyancy jump Ab becomes very large or very
small, outside the range of values encountered in the
present study.

One potential problem is immediately seen by exam-

ining (21) or (23). If the shear becomes strong enough
at the CBL top, the term involving Au®> + Av? can ex-
actly cancel the other terms, and the denominator be-
comes equal to zero. As this condition is approached,
the predicted ZOM entrainment flux ratio increases to
infinity, which is not realistic unless the surface buoy-
ancy flux B, approaches zero. If the shear further in-
creases, the predicted ratio becomes negative, and this
is also unrealistic. Such behavior of (23) is apparently a
result of the insufficiency of the physical hypotheses
underlying the problem or a consequence of some
physical mechanisms unaccounted for in (22) that
would cause the terms in the denominator of (23) to
cancel each other. The additional temporal terms incor-
porated in (17) but dropped in (23) suggest that the
nonstationarity of the TKE budget could be one of
these missing physical mechanisms.

b. Other ZOM parameterizations

Some suggested entrainment parameterizations
based on the ZOM approach differ from (23) only by
the values of the constants A, 1, C,, C4, and Cp. Others,
however, employ different hypotheses regarding the
dissipation of TKE in the entrainment zone, the effects
of surface shear, entrainment zone shear, and the man-
ner in which entrainment zone variables such as poten-
tial temperature jump are affecting the entrainment.

The parameterization of Tennekes (T73), which ac-
counts only for the effects of surface shear on the en-
trainment, through the use of u,, in the velocity scaling,
is essentially a truncated form of (23):

By ui W?n
“ B, Gll+A—=)=C—5. (24)
s * *

Moeng and Sullivan (1994) found (24) to be a good
representation of the characteristic velocity scale within
sheared CBLs, and Driedonks (D82) found it to match
some atmospheric datasets more closely than (23).
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Stull (ST76) employed a set of arbitrary scaling as-
sumptions regarding the mechanical generation of TKE
at the inversion base. He assumed that 7, scaled by
Au dz,;/dt, but he also parameterized velocity shear in
the entrainment zone as du/dz ~ Au*/(8, dz;/dt), where
8, is the difference between the buoyancy flux zero
crossing height and z; in the ZOM. As a result of these
assumptions, the problems associated with the denomi-
nator of (23) going to zero were circumvented:

=A +A2W+A3ﬁ'

By
B

(25)

s

Best fits of this expression with atmospheric data pre-
sented in Stull (1976¢) provide: A; = C; = 0.1 £ 0.05,
A, = 0.05 = 0.025, and A; = 0.001 = 0.0005. The en-
trainment zone shear term (the third term on the right-
hand side) is somewhat problematic to interpret be-
cause Au’ can have either a positive or negative sign,
depending on the orientation of the coordinate system.
As written, (25) lacks Galilean invariance because it
would predict opposite effects of shear on entrainment
if the coordinate system is rotated 180° about the z axis.
For the current study, the Au® term will be interpreted
as |Au).

Zeman and Tennekes (ZT77) developed their en-
trainment parameterization using a local TKE balance
equation at the top of the CBL. The surface shear ef-
fects were included through the modified velocity scal-
ing e ~ w2, = w2 + 4.6u2, with the constant A = 4.6
determined from the water tank data of Kato and Phil-
lips (1969). They also employed local, N-dependent
scalings for the dissipation of both buoyancy- and
shear-produced TKE in the entrainment zone (the
same scaling for the dissipation of buoyancy-generated
TKE is used in TD81). Conzemius and Fedorovich
(2004) evaluated the ZT77 parameterization without
the entrainment zone shear term, but in the present
study we wish to evaluate the original ZT77 dissipation
hypothesis regarding entrainment zone shear—gener-
ated TKE.

Batchvarova and Gryning (BG94) used a somewhat
different approach toward derivation of the entrain-
ment equation that involved the elimination of A6, a
dependent variable, from the entrainment equation by
substituting a diagnostic equation that relates A6 to the
surface friction velocity, heat flux (both of which can be
calculated from measured near-surface quantities), and
CBL depth. Because they did not directly consider en-
trainment zone shear and because they eliminated A#,
their entrainment parameterization can be applied
without evaluating any entrainment zone parameters,
which adds utility to the parameterization when it is
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used with atmospheric data since entrainment zone pa-
rameters are often difficult or expensive to measure.
The BGY9%4 formula is

B _ Xpg(l + Xgg)

B, 1+ Xpg + Yps(l +2Xgs)’

s

(26)

where Xpg = w;,/wi = Ci(1 + Aui/w?l), and Ygg =
Broil2 (N>22) with By, = 8.

c. Higher-order parameterizations

For sheared CBLs, the interface between the mixed
layer and the free atmosphere should be expected to be
more diffuse than in the shear-free case because of the
broadening spectrum of contributing instabilities of
various types, primarily Kelvin—-Helmholtz instabilities
(Kim et al. 2003). Therefore, an entrainment zone of a
relatively large depth may be an essential feature of the
sheared CBL and may need to be included in the sche-
matic representation of the CBL structure. ML76,
SR04, and K05 suggested entrainment parameteriza-
tions based on the higher-order CBL bulk models, the
simplest of which is the FOM (Betts 1974). The FOM
equations for the entraining CBL are considerably
more complex than the ZOM equations, and some of
the terms in those equations are difficult to interpret
physically, so most authors prefer to make some as-
sumptions that allow simplification of the equations.

Mahrt and Lenschow (ML76) assumed the entrain-
ment zone thickness Az to be much smaller than the
CBL depth z,, allowing numerous terms in the FOM-
based equations to be neglected. In particular, terms of
order Az and higher were neglected in the momentum
and buoyancy balance equations (which then acquire
the same form as their ZOM counterparts), and terms
of the order of Az* and higher were neglected in the
TKE equation. Also, if Az is small relative to z;, the
parameterization w'd’; = —Ad(dz;/dt), which is an ex-
act expression in the ZOM, can be used to approximate
the fluxes at the CBL top in the FOM. The ML76 en-
trainment equation, written in a form consistent with
(23), is

Az
B, Ab,dz/di [1 t26 - 2C€<1 " Zﬂ
Bs B Bs B < AZ) AL{% + AU%
1+— | ———

Ab,z;

Z;
(27)

where C, is the constant specifying the loss of TKE due
to transport out of the CBL by gravity waves, and Ab,,
Au,y, and Av, are the FOM buoyancy and velocity
changes at the CBL top. These FOM parameters are
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designated with the subscript “1” because they are not
exactly the same as their ZOM counterparts. Given the
results of Stull (1976b), Fedorovich et al. (2004a), and
Part I, for the present study we have assumed C, = 0
and C, = 0.4.

K05 suggested another FOM-based entrainment pa-
rameterization for sheared CBLs. Like ML76, they
made some assumptions to simplify their FOM-based
equations. Specifically, they approximated the buoy-
ancy flux and momentum flux profiles as linear in the
entrainment zone (in the full equations they are repre-

1 Am
wz (4Zi + ZAZK)

In the above expressions, the constants of proportion-
ality are A, = 0.2, A, = 0.26, and A5, = 1.44, and the
independent parameter Iy is the linear change of po-
tential temperature with respect to height above the
CBL. One possible shortcoming of this formula is the
representation of the velocity change across the en-
trainment zone by the expression 0.5(Au, + Av,) rather
than, for instance, (Au + Av?)"?. The former expres-
sion provides a physically confusing entrainment for-
mula if the signs of the velocity components are oppo-
site, but their moduli are large.

The entrainment zone thickness Azx in KOS5 is pa-
rameterized by the diagnostic formula

Azg = z;(1.12Ri, ' 4+ 0.08), where

_ Abyz;
w2+ 4ul + 0.1(Aud + Avy)

Ri, (30)

We have made a distinction between the entrainment
zone thickness Az, adopted in K05 and the FOM en-
trainment zone thickness Az = z,, — z; (see Fig. 1 for
definitions of z;, and z;) because of the different speci-
fications of these quantities. However, to evaluate (28),
we will use Az because determination of the jumps Ab;,
Auy, and Av, requires knowledge of Az. Otherwise, Az
in (30) needs to be determined iteratively from atmo-
spheric or simulation data.

Recently, Sorbjan (SR04) developed a parameteriza-
tion specifically designed to predict the heat flux at the
sheared CBL top. This parameterization takes into ac-
count a bulk Richardson number in the entrainment
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sented by quadratic terms), and they also took dAz/dt
= (. The resulting parameterization reads:

— B, _
B,
0.5(Au, + Av)?
Tnum/<1 _ [0.5(Au, vy)] A3K)7
2(8/60)(A0; — I'yAzx/2)(z; + Azg)
(28)
where

rn’

[0.5(Au, + Avl)]z}. (29)

0, — TyAzx/2

zone and therefore implies a finite entrainment zone
thickness. The SR04 parameterization is

(1 + c,5/Riy)
Bi =C WZNL- 5
N G N 7

with ¢; = —0.0075 and ¢,5 = 1.5. In (31), N, = (&b/
8z;)" is the Brunt—Viisila frequency within the inter-
facial layer, and the interfacial Richardson number Riy
is defined as Riy = (8bdz,)/(8u® + Sv?), where the ve-
locity and buoyancy jumps are interpreted as their
changes across the entire entrainment zone 8z; = z;, —
z; (see Fig. 1). The parameterization asymptotically ap-
proaches either an expression describing a purely
shear-driven CBL or one describing a purely buoyancy-
driven CBL, depending on the relative contributions of
shear and buoyancy to the evolution of the CBL. It only
takes the entrainment zone shear into account and ne-
glects surface shear.

(1)

3. Evaluation of entrainment equations and
parameterizations

a. Large-eddy simulations

The output of a total of 24 LES runs, described in
Part I, was used to test the parameterizations against
conditions of varying shear, outer stratification, and
surface buoyancy flux. Main features of the conducted
simulations, the parameter space for the simulated
CBLs, and the statistics calculated from LES are de-
scribed in detail in Part I. The simulations cover outer
temperature gradient values of 96/9z = 0.001 K m™",
and 90/0z = 0.003 K m™ !, and 90/0z = 0.01 K m™'
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(N =0.006s"' N=001ls" and N = 0.018 s, re-
spectively) as well as surface kinematic temperature
flux values of Q, = 0.03 Kms™%, Q, = 001 Kms™,
and Q, = 0.3 K ms™' (buoyancy flux of B, = 0.001
m?s3, B, = 0.003 m*s >, and B, = 0.01 m*s 3, re-
spectively). The simulations are divided among three
categories of shear: a simulation set with background
conditions of no mean wind or wind shear (NS); a simu-
lation set with a height-constant geostrophic wind of 20
ms ' (GC); and a simulation set in which the geo-
strophic wind speed varies as a function of height
throughout the domain, ranging from 0 ms™' at the
surface to 20 m s~ ! at the top of the simulation domain
(GS). The NS, GS, and GC designations will be used for
the remainder of the text to refer to the type of shear
encountered by the growing CBL in each particular
simulation. The GS cases were primarily designed to
investigate the effects of shear at the CBL top on the
entrainment, and the GC cases were designed for in-
vestigation of the effects of surface layer shear.

b. Method of evaluation

There are several ways to evaluate the entrainment
parameterizations discussed in section 2 against the
LES data from Part I. The first is to evaluate (23)
through (28) and (31), retrieving the parameters of en-
trainment from LES in a consistent manner with their
definitions in the respective models of the CBL. Such
evaluations yield model-predicted entrainment flux ra-
tios, as a function of time, for the parameters of en-
trainment (CBL depth, buoyancy and velocity changes
in the entrainment zone, surface friction velocity) as
they appear at that time in LES. Alternatively, the full
set of equations describing the CBL evolution can be
integrated for each of the derived parameterizations,
and their predictions of z,(f) can be compared against
LES. However, not all parameterizations discussed
above are accompanied by corresponding momentum
and buoyancy balance equations for the CBL, which
would be necessary to include them in such a test.

Because we solved for dz;/dt on the way to deriving
(23), the latter expression should capture the behavior
of the different parameterizations just as well as if they
were used to predict z;(¢), given initial values of z;, Au,
Av, and A6 retrieved from LES. Based on this consid-
eration, the entrainment flux ratio predicted by the re-
spective parameterizations, as discussed above, will
serve as the benchmark for comparing the bulk model
predictions with LES.

c. Retrieval of parameters of entrainment from LES

To have sense, the equations and parameterizations
must be interpreted fully within the model framework
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in which they were developed (Fedorovich et al. 2004a).
If the parameterization is developed from the ZOM,
then the integral parameters of entrainment input to
the parameterization must be interpreted according to
the ZOM, as shown in Fig. 1; the same is true for the
FOM. There must also be consistency between the
ZOM, FOM, and LES regarding the notion of the CBL
depth z; (Fedorovich et al. 2004a) as well as with re-
spect to the interpretation of the CBL buoyancy (D82)
and momentum distributions.

We interpret the CBL depth z; as the minimum in the
buoyancy flux profile. This is a definition of z; that is
common to the ZOM, FOM, and LES. Another popu-
lar CBL depth definition, from the maximum potential
temperature gradient, loses sense in the FOM, where
temperature (buoyancy) gradient is constant over the
entire entrainment zone. Additional reasons for using
the heat flux minimum height as the CBL depth scale
are discussed in Fedorovich et al. (2004a).

In the ZOM, the buoyancy jump Ab is interpreted as
the difference between the free-atmosphere buoyancy
value, extrapolated to z;, minus the mixed layer buoy-
ancy, which is the average buoyancy value below z,.
However, rather than using b(z;,) as a representation of
the mixed layer buoyancy as in Fedorovich et al.
(2004a), we calculate from LES data the vertical aver-
age of b below z; (the two actually turn out to be very
close to one another). Additionally, above z,, we inte-
grate the buoyancy difference between the LES buoy-
ancy profile versus the free-atmospheric profile and
add this integral difference to the integral mixed layer
buoyancy, before dividing by z,, to obtain the mixed
layer buoyancy value, b,, (see Fig. 2a):

<i

1
b,, = Z_ f bypsdz + f (bres = Dinid) dz |, (32)

1
0 zj

where b;,;(z) is the initial (r = 0) LES profile in the free
atmosphere, which is constant with time, and b; g is the
LES horizontally averaged LES buoyancy profile at
time ¢. The buoyancy jump at the interface is then Ab =
binit (z;) — b,,- Examination of the LES data has shown
that most of this integral buoyancy difference above z;
is associated with the diffuse nature of the entrainment
interface. Performing the operation inside the brackets
of (32) essentially amounts to putting the excess buoy-
ancy just below z; back just above z;. The same proce-
dure is used to determine Au and Av. Although this
method may appear to artificially force the LES pro-
files to be ZOM-like when the interfacial layer might
truly be diffuse in a mean sense, the method is the most
consistent with the conceptual framework of the ZOM,
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FIG. 2. Determination of the (a) ZOM and (b) FOM parameters of entrainment from LES data. To determine

the mixed layer buoyancy b

. the hatched area in (a) is subtracted from the integrated buoyancy between z = 0

and z = z;. The shaded area is equal to the hatched area. In (b), the view is focused on the entrainment zone, and
Ab, is constrained to the value for which the shaded and hatched areas are equal (brpy, is a linear function of z),
and b, is defined as the average LES buoyancy between z = 0 and z = z,.

and it extracts ZOM parameters of entrainment from
LES in a manner that ensures conservation of integral
buoyancy and momentum between the LES and ZOM
profiles. D82 has also discussed the need for conserva-
tion of integral buoyancy.

The same integral buoyancy and momentum conser-
vation principles are used to retrieve FOM parameters
of entrainment from LES (see Fig. 2b). First, the CBL
depth z; is determined from the LES profile. The FOM
mixed layer buoyancy b,,; is then determined by aver-
aging the LES buoyancy below z;. Above z,, the integral
buoyancy difference between LES and the free-
atmospheric profile is calculated in the same manner as
described above, but, instead of adding it to the integral
mixed layer buoyancy, the integral difference is used as
a constraint to determine the FOM interfacial layer
thickness Az:

zi+Az

f (bres = bini) dz = (brom ~ bini) dz,  (33)
assuming a linear profile of broy, in the entrainment
zone as defined in the FOM (see Fig. 2b). Using this

constraint, the entrainment zone depth is found to be

o

2 f (binit — bres) dz
i

A =
¢ bini(Z3) — byt

(34)

Analysis of LES output shows that Az retrievals from
this method are very close to what they would be if Az
were defined as the difference between the upper in-
terface of the entrainment zone z;, and the CBL top z;.

d. Differing interpretations of buoyancy and
velocity jumps

Occasionally, it was clear that the authors of the dis-
cussed entrainment parameterizations interpreted the
buoyancy and velocity jumps across the entrainment
zone rather differently when retrieving them from LES
or atmospheric data. Since the authors often selected
the constants such as A, C;, C, and Cp based on tests
of their parameterizations against LES or atmospheric
data, it is probably best to test those parameterizations
in a manner consistent with the way they were tested by
the original authors. To the extent possible, we inter-
pret the buoyancy and velocity jumps the way they
were interpreted by the original authors. In particular,
PO3 interpreted the jumps retrieving buoyancy and ve-
locity at the level where the horizontally averaged po-
tential temperature gradient first became equal to or
greater than the free-atmospheric potential tempera-
ture gradient and subtracting, from those values, the
mixed layer values, which were taken at the 11th LES
grid level (D. Pino 2003, personal communication;
Fedorovich et al. 2004c). In most cases, the original
author’s precise definitions of the jumps was not known,
so the procedure outlined above served as the default,
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FIG. 3. Entrainment flux ratio predicted for the GS case with 90/9z = 0.003 Km ™' and Q, = 0.03 K m s~ ' by LES and the entrainment
parameterizations classified according to the following categories: (a) ZOM, surface shear only; (b) ZOM, surface and entrainment zone
shear; (c) FOM and other higher-order closures. The outputs from LES and parameterizations are labeled with the following symbols:
LES —B,,/B, (solid dots); LES —8B,/B, (solid squares); T73 (crosses); D82 (open diamonds); BG94 (open squares); ZT77 (open
circles); TDS81 (open triangles); B84 (X); ST76 (open crosses); P03 (open stars); SR04 (inverted triangles); ML76 (asterisks); and K05

(hatched open squares).

and therefore, our definitions of the jumps may occa-
sionally be different from those of the original authors.

4. Results of testing

The results of our simulations (see Part T) show that
the most fruitful comparisons between the simulations
and the parameterizations can be made by focusing on
a subset of the simulated cases. For reasons explained
in Part I, we focus here on the GS and GC cases with
the following values of free-atmosphere stratification
and surface heat flux:

(subsection a) 96/9z = 0.003 K m~' and Q, = 0.03 K

1

ms

(subsection b) 96/9z = 0.01 K m ' and Q, = 0.1 K
ms_l;

(subsection ¢) 90/0z = 0.01 K m~! and Q, = 0.3 K
—1
ms L.

a. 000z = 0.003 K m~' and Q, = 0.03 K ms™!
1) GS case

Figure 3 shows the comparisons between the LES-
predicted entrainment flux ratios Ay (see Part 1) and
the parameterization predictions of entrainment flux
ratios. The parameterizations are grouped according to
the following classes: (i) ZOM-based parameterizations
including the effects of surface shear but not entrain-
ment zone shear; (ii) ZOM parameterizations including

both surface and entrainment zone shear; and (iii)
FOM parameterizations. Some of the parameteriza-
tions predict the LES ratio 6B;/B, while others predict
—B,y/B; = Ag, which is the ZOM representation of the
heat flux at the top of the CBL (see Part I). Since these
two ratios are not the same (see Fig. 1), they are both
presented from the LES data for comparison with the
parameterization results. The same groupings (i), (ii),
and (iii) will be used for the remaining figures in this
section.

In Fig. 3a, the parameterized entrainment flux ratio
—B,y/B, is consistently less than —B,,/B, derived from
LES. In fact, the parameterized —B,,/B, does not de-
part significantly from the commonly accepted shear-
free value of 0.2, and for much of the simulation, the
parameterized —B;,/B, is also less than the —&B,/B;
ratio from LES. Since these ZOM-based parameteriza-
tions include only the effects of surface shear on en-
trainment, they are unable to model the effects of the
entrainment zone shear that are dominant in the GS
cases.

The ZOM parameterizations that take into effect the
entrainment zone shear can, under certain conditions,
model the entrainment flux ratio more accurately (see
Fig. 3b). However, in many cases, these parameteriza-
tions overpredict the entrainment flux ratio. In particu-
lar, the TD81 parameterization predicts a rapidly in-
creasing ratio as the entrainment zone shear increases
during the simulation, and the B84 parameterization
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does not even predict a realistic —B,,/B, (its predicted
values do not fall within the range shown in Fig. 3b); its
denominator becomes very small or jumps around ei-
ther side of zero, resulting in wild fluctuations of the
parameterized —B,y/B,. Although the TD81 param-
eterization more accurately predicts the entrainment
flux ratio, the denominators of B84 and TDS81 differ
only by the values of the constants C; and Cp, so the
inherent weakness of all parameterizations of the form
(23) can be seen. B84 has a smaller C, resulting in less
parameterized TKE take-up by the reservoir within the
CBL interior, and Cp = 1, so all of the TKE generated
by entrainment zone shear is assumed to be used for
entrainment. It appears that this fraction should actu-
ally be much smaller (see Part I). The P03 parameter-
ization is also of the form of (23), but it was used with
its own specific criteria for the velocity and buoyancy
jumps at the CBL top (see above), and with those cri-
teria, the PO3 parameterization seems to agree reason-
ably well with —B,,/B, from LES. However, the P03
parameterization is tuned to predict 6B;/B,, which, as
derived from LES, is much less in Fig. 3b. The P03
predictions show considerable scatter during the simu-
lation, symptomatic of the denominator becoming
rather small and the output of the parameterization
becoming very sensitive to small changes in Au, Av, and
Ab. The constant Cp in P03 is smaller and C; is larger
than in B84, so its predictions of the entrainment flux
ratio are closer to the LES-derived ratios. The ZT77
parameterization has the same form as B84 and TDS8I1,
but the assumptions regarding the dissipation of en-
trainment zone shear-produced TKE are different, and
those assumptions appear to work better for this par-
ticular GS case. The ZT77 parameterization of —B,,/B;
seems to fall between the two LES-derived entrainment
flux ratios, and the time-dependent behavior of the
ZT77 parameterization mimics that of the LES —B,,/
B,. The ST76-parameterized —B,y/B; also compares fa-
vorably with the LES values overall, but its time de-
pendency differs from LES.

With the exception of the ML76 parameterization,
the higher-order model parameterizations show im-
proved predictions of the entrainment flux ratio com-
pared to the ZOM-based parameterizations (see Fig.
3c). The FOM-based parameterizations of ML76 (27)
and K05 (28) include the entrainment zone shear term
in the denominator, with the accompanying, potentially
negative consequences. The integral method used to
derive these FOM parameterizations is essentially the
same as that used in the ZOM, so, although the order of
the model is higher, the parameterizations appear sub-
ject to the effects of similarly formulated mathematical
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or physical assumptions as those inherent in (23). How-
ever, the K05 parameterization predicts entrainment
flux ratios that match the LES ones rather well. It must
be noted that the dissipated fraction of entrainment
zone shear-generated TKE assumed by K05 is approxi-
mately the same as used in TD81 and P03, yet the K05
parameterization provides better agreement with the
LES entrainment flux ratio —8B,/B, than either of the
TD81 or P03 parameterizations. This again suggests
that the entrainment zone thickness Az is an important
parameter to include in the entrainment equations for
the sheared CBL. The ML76 model employs a dissipa-
tion parameterization that results in the dissipation of
TKE becoming decoupled from its production, and this
appears to be the primary reason behind its relatively
poor predictions of —6B,;/B,.

The SR04 parameterization predictions of —8B,;/B,
match those of LES rather well, increasing in time
much like the LES —6B,;/B, does. Since the Sorbjan
(2004) parameterization consistently underpredicted
the entrainment flux ratio in our initial tests, we elected
to double the value of ¢;; when evaluating (31) against
the LES data. The results for the doubled c;; are shown
in our figures.

2) GC CASE

The predictions of the ZOM-based parameteriza-
tions T73, D82, and BGY4 are probably better suited to
be tested against the GC case simulations because of
the strong surface shear in those cases. All these pa-
rameterizations show enhanced entrainment flux ratios
in Fig. 4a, but the predicted entrainment flux ratios are
a bit larger than those derived from LES. The qualita-
tive time tendency of the parameterized entrainment
flux ratios reproduces the behavior of the LES-
retrieved ratios reasonably well, with very large ratios
early in the simulation and rapidly decreasing ratios
soon thereafter, with the ratios approaching nearly con-
stant values late in the simulations. As the simulation
proceeds, the larger z; in the convective velocity scale
w,. = (B,z,)"”® becomes dominant over the effects of the
surface shear (u,,) in (24), so (24) may reasonably well
mimic the simulated behavior of —B,,/B,, as appears to
be the case in Fig. 4a. Although the results of Part I
testify the entrainment depends directly on entrain-
ment zone shear and not surface shear, the surface
shear does have a direct effect on the mixed layer ve-
locity (as was discussed in Part I), which partly deter-
mines the entrainment zone shear, so equations like
(24) seem to model the qualitative behavior of entrain-
ment (such as decreasing entrainment flux ratios with
time) rather well for the GC cases.

Similar overpredictions of the entrainment flux ratio
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FIG. 4. Entrainment flux ratio predicted for the GC case with 90/0z = 0.003 K m~" and Q, = 0.03 K ms™". For notation, see Fig. 3.

are seen in Fig. 4b, where the qualitative time behavior
of the parameterized entrainment flux ratios differs
from LES. The ZT77 and ST76 parameterizations pre-
dict nearly constant ratios between 1.6 and 2, and the
P03 parameterization predicts a steadily increasing
8B,;/B, that does not behave similarly to the LES-
derived 8B,/B,. Again, the B84 parameterization does
not predict realistic entrainment flux ratios; its denomi-
nator becomes less than zero because of the large Cp it
employs. The TD81 parameterization also goes off the
scale used in the figure.

Among parameterizations shown in Fig. 4c, both the
SR04 and K05 parameterizations describe the LES-
predicted 8B,/B, in a realistic manner, although the
SR04 parameterization provides slightly lower values of
the entrainment ratio than the LES does. The K05 pa-
rameterization produces large 6B;/B early on, followed
by a gradual decrease of the predicted entrainment flux
ratios over the remainder of the simulation. This seems
to agree with the qualitative behavior of 8B,/B, in the
simulations. The K05-assumed fraction C, of entrain-
ment zone shear-generated TKE available for entrain-
ment is higher than the value of C, obtained from the
LES in Part I. Nevertheless, the K05 parameterization
still predicts the simulated 8B,/B, rather well. It is un-
certain whether this is the result of insensitivity to Cp or
the result of a mutual cancellation of errors arising from
an excessive value of Cp combined with the confusing
expression 0.5 (Au; + Av,) for the velocity increment
across the entrainment zone. The ML76 parameteriza-
tion again appears to suffer from its simplification of
the TKE equation and its dissipation assumptions. Con-
sequently, the denominator fluctuates around zero, and

the parameterization predicts ratios that considerably
fluctuate over the course of the simulation.

b. 90/0z = 0.01 Km ' and Q, = 0.1 Kms*
1) GS cASEs

In CBLs, which are more dominated by buoyancy ef-
fects both in terms of buoyancy production of TKE and
the potential temperature stratification in the free atmo-
sphere, the predictions of entrainment by some of the
parameterizations fall in line with the simulated entrain-
ment flux ratios. However, Fig. 5a shows that the surface-
shear-only parameterizations still underpredict the en-
trainment flux ratio relative to LES because they do not
account for the entrainment zone shear, which is the
dominant entrainment-enhancement factor in this case.

Again, the parameterizations with entrainment zone
shear show a stronger dependence of the entrainment
flux ratio on the shear. With strong stratification, the
B84 parameterization is less subject to the problems
associated with the denominator hovering around zero,
and its predictions of —B,,/B, are on the scale displayed
in the figure, but the values are still much higher than
the LES predicts. This is a further testament to the
underpredicted dissipation of shear-produced TKE.
The parameterized —B,,/B, from TD81 matches the
LES values more closely than in Fig. 3b, but the pre-
dicted entrainment ratio values are again larger than
the simulated ones. The LES results discussed in Part I
suggest that the surface shear-generated TKE does not
have a direct influence on the entrainment and, if the
effects of both the surface shear and entrainment zone
shear are included in the entrainment equation, the
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FIG. 5. Entrainment flux ratio predicted for the GS case with 90/9z = 0.010 K m~' and Q, = 0.1 K ms™'. For notation, see Fig. 3.

equation tends to overpredict the entrainment. How-
ever, the ZT77 and P03 parameterized entrainment flux
ratios match their LES counterparts very well in this case.

The ST76 parameterization performs reasonably well
overall, but it predicts a steady increase of the entrain-
ment ratio, whereas the entrainment flux ratios from
LES tend to level off with time. This could partially be
a result of steadily increasing surface shear during the
simulation. Moreover, in (25), the numerator of the
entrainment zone shear term is cubic in |Au|, and there
is B, in the denominator, which remains constant with
time in this study. On the other hand, in (21), the en-
trainment zone shear term, proportional to the square
of velocity jump, is divided by a Ab that increases with
time in the simulations. So the entrainment flux ratios
parameterized by (21) level off with time as they do in
the simulations, whereas the ST76 parameterization is
unable to model this behavior.

Of all the parameterizations shown in Fig. 5c, the
SR04 parameterization of the entrainment flux ratio
best matches the simulated ratio —8B,/B,. Remarkably,
it accomplishes this without taking into account the ef-
fects of surface shear, which is a further indication that
surface shear TKE production may not be directly im-
portant for the entrainment enhancement. The ML76
parameterization also performs reasonably well, but it
overpredicts the ratio a little bit just like the KOS5 pa-
rameterization does. The K05 parameterization matches
LES —6B,/B, rather well, but the values do not change
as much over the simulation as the LES values do.

2) GC CASES

The behavior of the entrainment flux ratios in Fig. 6a
matches LES entrainment flux ratios more closely than

in Fig. 4a and, as is the case in Fig. 5a, the TKE gen-
eration and consumption is dominated by the buoyancy
forcing. However, the relative differences between LES
and the parameterizations are qualitatively the same
as those shown in Fig. 4a. In particular, the D82 pre-
dictions of —B,y/B, are nearly double the simulated
—B,y/B,. The increased dominance of buoyancy-related
production of TKE in this case, compared to that in
section 4a(2), allows (23), with a larger w,,, to predict a
lower entrainment flux ratio, matching the LES ratio
more closely.

In Fig. 6b, the P03 parameterization most closely pre-
dicts the value of the simulated entrainment flux ratio
in the overall sense, although the predicted time depen-
dence is somewhat different from the simulated time
dependence. The PO3-predicted entrainment flux ratios
remain nearly constant, while the simulated ratios de-
crease slightly. The P03 expression has a smaller value
of A, so the decrease of the ratio w3, /w3 with time is
not as significant as it is in the other parameterizations.
It also has a larger C in the temporal term, which acts
to decrease modeled entrainment flux ratios at early
stages of CBL evolution when dz,/dt is large. The ST76
and TD81 parameterizations overpredict —B,,/B,, with
the TD81 parameterization being off-scale in the first
half of the simulation and decreasing to —B;,/B, < 2 in
the second half. The ST76-parameterized —B,,/B;
steadily increases during the run, again due to the en-
trainment zone shear term being cubic and not divided
by Ab.

In Fig. 6¢c, the SR04 parameterization most closely
matches the simulated entrainment flux ratio —6B,/B,,
although the values are a little low early in the simula-
tion and slightly larger than the LES values by the end.
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F1G. 6. Entrainment flux ratio predicted for the GC case with 96/dz = 0.010 K m™

The ML76-parameterized entrainment flux ratios also
compare reasonably well with the simulated ratios but
are a little high. Finally, the KO5-predicted ratios are,
again, a little higher than the LES ratios at the very
earliest stages of the simulation, but they match the
LES ratios quite closely over the remainder of the
simulation. Perhaps some of the excessively large ratios
early in the simulation are due to the fact that u, ap-
pears twice in (29): once in the term associated with
A, and again in the term with A5x. The surface friction
velocity u,, does not appear in the SR04 parameteriza-
tion and, given that most of the surface-generated TKE
is dissipated locally (Lenschow 1970, 1974; Deardorff

Tand Q, = 0.1 K m s~ '. For notation, see Fig. 3.

and Willis 1982; Moeng and Sullivan 1994; Part 1), it
brings us to the idea that near-surface shear production
may be neglected in the TKE integral budget (entrain-
ment) equation whenever the entrainment zone shear is
included in the parameterization.

c. 00/0z =0.01 Km " and Q, = 0.3 Kms '

1) GS CASES

Figure 7 presents entrainment ratios for the GS cases
in which the buoyancy production of TKE is dominant
over the shear production of TKE. The parameteriza-
tion outputs do not differ much from one another be-
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and Q, = 0.3 K ms™’. For notation, see Fig. 3.
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FIG. 8. Entrainment flux ratio predicted for the GC case with 96 s/dz = 0.010 K m™*

cause the free-atmospheric stratification is larger in
CBL cases presented in Figs. 5 and 7 than in the ones
shown in Fig. 3. The value of Ab is therefore larger,
acting to compensate the shear term, and a larger Ab
suppresses the CBL growth in general (Sorbjan
1996a,b). Since the stratification is the same in Figs. 5
and 7 and the friction velocity is relatively small in the
GS cases (preventing the ratio w},/w3. from changing
much, even though w3 increases with the larger B,),
most of the entrainment parameterizations in Figs. Sb
and 5c and in Figs. 7b and 7c are not much different
because the denominator of (23) has approximately the
same value in both cases. This small variability of the
parameterized ratios matches the simulated change in
the behavior of —B,,/B, rather well. The ST76-
parameterized ratios, however, are smaller in Fig. 7b
compared to Fig. 5b because of the larger B, in the
denominators of both shear terms. Therefore, the ST76
parameterization does not predict the simulated change
in entrainment flux ratio between Figs. 5b and 7b like
the parameterizations of the form (23) do.

2) GC CASES

In the GC cases, the ratio w;,/w3 decreases with
increasing By, so the surface-shear-only parameteriza-
tions produce smaller entrainment flux ratios (cf. Fig.
8a with Fig. 6a). For the ZOM parameterizations,
which include both shears, there are two major factors
responsible for the differences between entrainment ra-
tios in Fig. 8b and Fig. 6b. First, because B, is larger in
the CBL cases shown in Fig. 8b, w2, is also larger, re-
sulting in a larger temporal term in the denominator of
(21). Also, because of the more rapidly growing CBL

and Q, = 0.3 K m s~ .. For notation, see Fig. 3.

and active entrainment of momentum in the cases
shown in Fig. 8b, the mixed layer velocity more closely
matches the free-atmospheric velocity, and the entrain-
ment zone shear term is slightly smaller. These two
effects reduce the chances of the denominator becom—
ing close to zero. Secondly, the smaller values of w3, /w3,
further decrease the parameterized entrainment flux
ratios; these ratios are smaller in Fig. 8b than in Fig. 6b.

With the exception of the B84 parameterization,
which uses Cp = 1, all parameterized —B,,/B, values
fall close the simulated range of —B,,/B, in Fig. 8b. In
general, the parameterizations perform rather well in
the buoyancy-dominated CBLs because the value C; =
0.2 is rather well established for such CBLs, and the
relative influence of the shear generation of TKE,
whose effects on entrainment are less well understood,
is smaller in this case. The poor performance of B84
relative to the other parameterizations, when compared
against LES data, is a strong indicator that Cp = 1 is an
overestimation, and therefore the dissipation of en-
trainment zone shear-generated TKE is probably larger
than has been assumed in previous studies.

The ST76-parameterized entrainment flux ratios de-
crease proportionally with the increase in B, between
Fig. 6b and Fig. 8b (a factor of 3), and the cubic en-
trainment zone shear term is greatly affected by the
small decrease in entrainment zone shear as well. So
overall, the performance of the ST76 parameterization
is dramatically affected by these changes. The SR04-
predicted ratios decrease a bit as well (see Fig. 8c) since
the increase in Rig, seems to be more significant than
the increase in w2, see (31). The FOM-based param-
eterizations are affected by the increased B, and slightly
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F1G. 9. Comparison between entrainment flux ratio predicted as a result of this study (crosses) and LES (solid dots) for the GS cases
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0, =03 Kms™!; GC cases with (d) 90/9z = 0.003 Km ™' and O, = 0.03 Kms™'; (e) 00/9z = 0.010 Km ' and Q, = 0.1 Kms™'; and

(f) 90/0z = 0.010 Km™" and Q; = 0.3 Kms™".

decreased entrainment zone shear in the same manner
as the ZOM parameterizations are.

d. Evaluations with new values of constants

Finally, we evaluate (23) with new constants chosen
from the results of the LES analyses in Part I. For both
the GS and GC cases with 90/9z = 0.003 K m~' (Fig.
9a) and Q, = 0.03 K m s~ (Fig. 9d), the new constants
provide a better prediction of the entrainment flux ra-
tio, compared to predictions with larger values of A, C,,
and Cp. Values for the GS case match the LES entrain-
ment flux ratio rather well, but in the GC cases there is
still some overprediction of the ratio. In both cases, the
parameterization still displays great sensitivity to the
values of the integral parameters of entrainment re-
trieved from LES and, therefore, has a lot of scatter.

With 96/9z = 0.010 K m™ ' and O, = 0.1 K ms ™/,
there is somewhat less scatter, like in the earlier con-
sidered entrainment predictions for CBLs growing in
the more stably stratified free atmosphere (see section
4b and Figs. 5b and 6b). Nevertheless, there is still some
overprediction of the ratio for the GC case (Fig. 9¢),
although a majority of the data points fall relatively

close to the LES-retrieved entrainment flux ratios. In
the GS case (Fig. 9b), the parameterized entrainment
flux ratio values are actually somewhat smaller than
those retrieved from LES. Overall, for both GS and GC
cases, the parameterization performs reasonably well.

With 90/0z = 0.010 K m~ ' and Q;, = 03 K ms™'
(Figs. 9c and 9f), the parameterization with new con-
stants performs best. One must keep in mind that these
cases are most buoyancy-dominated, and one can ex-
pect errors in the quantification of the shear to be
masked, to some extent, by the buoyancy domination.
Nevertheless, one can see the general improvement in
the predictions of —B,,/B, over similar parameteriza-
tions of the form (23) when comparing Figs. 9c and 9f
with Figs. 7b and 8b.

Opverall, the improved predictions of —B;,/B, indi-
cate the use of (23) as the form of the TKE equation,
with lower values of A, C,, and Cp, along with (5), (6),
and (7) as equations to describe the parameters of en-
trainment Ab, Au, and Av, should quantify the effects of
shear on the evolution of the CBL rather well. In fact,
when these equations are integrated, the output (not
shown) agrees favorably well with LES in most cases,
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but there are still some cases that present some diffi-
culty in matching the integration output with the LES
output. This may be the result of deficiencies in the
ZOM representation of the sheared CBL structure.
Preliminary tests of equations developed using the
FOM representation show some improvement over the
ZOM-based equations. A more thorough investigation
of the utility of FOM-based equations for parameter-
ization of entrainment in sheared CBLs will be saved
for future study.

5. Summary and conclusions

The reported study has examined the behavior of the
numerical models of entrainment in sheared CBLs by
comparing the bulk model parameterizations for the
buoyancy flux at the CBL top with LES data. The tests
of the integral budget-based entrainment parameteriza-
tions suggested to date show that most of them over-
estimate entrainment in CBLs with strong shear. It may
be argued that the shear in the numerically simulated
CBL cases was rather strong. However, the CBL cases
selected for comparison with bulk models were specifi-
cally designed to make the relative effects of shear
more prominent and to make the tests of the entrain-
ment equations more severe.

Perhaps the most important conclusion reached in
the present analysis concerns the shear-produced TKE
that is available for entrainment. It was found to be
lower than has been reported in earlier studies, both for
the entrainment zone shear-produced TKE and for the
surface layer shear-produced TKE. For the entrain-
ment zone shear, the fraction Cp in (23) should be low-
ered from the commonly used value of 0.7 to the value
of 0.4 retrieved from the LES data in Part I. It also
appears from Part I that essentially all of the surface-
generated TKE is dissipated in the lower portion of the
CBL so that the value of A can be set to zero in pa-
rameterizations such as (23). Therefore, within the
Z.0OM methodological framework, the use of (23) as the
form of the TKE equation with the values of A = 0,
C,;=0,and Cp = 0.4, along with (5), (6), and (7) as the
momentum and buoyancy integral balance equations,
appear to quantify the effects of shear on the evolution
of the CBL rather well.

Nevertheless, our results also show that the param-
eterizations that include only the surface layer shear
(and exclude the entrainment zone shear) perform
rather well against the simulated GC cases since, in
these cases, the surface friction velocity acts as a proxy
for the entrainment zone shear effect, provided the sur-
face layer shear is relatively strong. It merely appears
that the value of A needs to be reduced somewhat in
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(24). In the GS cases, where entrainment zone shear is
large and surface layer shear is very weak, the param-
eterizations accounting only for surface shear perform
poorly. It should be noted, however, that with their very
strong geostrophic shear, the GS cases can be consid-
ered less representative of typical atmospheric condi-
tions than the GC cases are.

In our final tests of (23), we have chosen to omit the
TKE spinup term entirely, and the results of the tests
show that it is generally not an important term for the
CBL cases included in the present study. Probably,
also, the overall meaning of this term has to be recon-
sidered, given the findings reported in the present pa-
per as well as in Fedorovich et al. (2004a,b). It is still
possible that the term may turn out to be significant in
CBL cases strongly affected by nonstationarity of the
TKE integral budget.

Provided that Kelvin—-Helmholtz instabilities appear
to be an inherent feature of convective entrainment in
the presence of wind shears, as our and other LES show
(see, e.g., Kim et al. 2003), any Richardson-number-
dependent entrainment equation in which the Richard-
son number is local to the entrainment zone (versus a
bulk Ri for the whole CBL) would seem to be most
suited to predict the growth dynamics of the sheared
CBL. In bulk models of the CBL, this local Richardson
number dependence can be represented by including an
interfacial layer of linearly changing buoyancy and ve-
locity at the top of the CBL, as implied in the FOM-
based parameterizations, and using the Richardson
number to relate the buoyancy and momentum incre-
ments across this layer. The results of section 4 indicate
that such a representation of the entrainment zone
structure improves the ability of bulk parameterizations
to model the simulated entrainment flux ratios in the
sheared CBL cases. It is possible, however, that the
higher-order terms neglected while developing some
FOM-based entrainment parameterizations may re-
main important for the strongly sheared CBLs, and the
absence of these terms might also be affecting the re-
sults of the presented analysis. The issues surrounding
the neglected terms will be addressed in future work.

The entrainment equations that are derived by ad-
hering strictly to the ZOM and FOM methodology con-
tain the entrainment zone shear as a negative-sign term
in the denominator, which often makes the denomina-
tor zero or negative. Such apparently poor mathemati-
cal formulation of the problem may be the result of
insufficient physical hypotheses, such as the lack of
spinup terms associated with shear-generated TKE or
underestimated dissipation of entrainment zone shear-
generated TKE. The strictly ZOM-based parameteriza-
tions modeled the qualitative temporal behavior of the
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entrainment flux ratio better than parameterizations
that circumvent the problem of the negative sign term
in the denominator. Likewise, traditional ZOM param-
eterizations tended to reproduce the sensitivity of
entrainment to surface buoyancy flux B, and free-
atmospheric stratification better than the deviant
models.
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