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Natural convection in a stably stratified fluid
along vertical plates and cylinders
with temporally periodic surface

temperature variations
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This paper describes one-dimensional (parallel) laminar natural convection in a
viscous stably stratified fluid owing to temporally periodic variations in the surface
temperature of infinite vertical plates and circular cylinders. Analytical solutions of the
one-dimensional (parallel) Boussinesq equations of motion and thermodynamic energy
are obtained for the periodic regime for arbitrary values of ambient stratification,
Prandtl number and forcing frequency. The solutions for plates and cylinders are
qualitatively similar and show that (i) the flows are composed of two waves that
decay exponentially with distance from the surface: a fast long wave and a slow
short wave; (ii) for forcing frequencies greater than the natural frequency of the
corresponding inviscid system, these two waves propagate away from the surface;
and (iii) for forcing frequencies less than this natural frequency, the short wave
propagates away from the surface while the long wave propagates toward the surface.
This latter case provides an example of a flow for which the conventional radiation
condition is not appropriate. The analytical results are complemented, for the plate
problem, with three-dimensional numerical simulations of flows that start from rest
and are suddenly subjected to a periodic thermal forcing at the plate. The numerical
results depict the transient (start-up) stage of the flow and the approach to a periodic
regime. These results confirm that the analytical solutions provide the appropriate
description of the periodic regime.

1. Introduction
Unsteady natural convection flows abound in nature and technology. Such flows are

notoriously difficult to analyse theoretically because of the intrinsic coupling between
the temperature and velocity fields. A notable exception is the classical problem
of unsteady laminar one-dimensional (parallel) natural convective flows along an
infinite vertical plate, a class of flows for which the Boussinesq equations of motion
and thermodynamic energy reduce to a set of linear partial differential equations
that may be solved analytically in a number of circumstances (Gebhart et al. 1988).
These solutions can be counted among the few known exact solutions of unsteady
natural convection. Such solutions are prized for the insights they provide into flow
behaviour and for their use as benchmark solutions for verification of computational
fluid dynamics algorithms.

In the 1950s and 1960s, analytical solutions for unsteady one-dimensional natural
convection along an infinite vertical plate were obtained for a variety of surface
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forcings, for an unstratified fluid (Illingworth 1950; Siegel 1958; Menold & Yang
1962; Schetz & Eichhorn 1962; Goldstein & Briggs 1964). The related problem
of unsteady natural convection from an impulsively heated circular cylinder was
considered by Goldstein & Briggs (1964). These solutions described resting fluids that
were abruptly set into motion through the agency of a surface heat flux or temperature
perturbation of prescribed temporal variation. The flows were characterized by a
sudden burst of convection along the plate, followed by an inexorable outward
growth of the boundary layer. One-dimensional solutions were obtained for natural
convection driven by impulsively started temporally periodic surface temperature
and surface heat flux variations of vertical plates (Das, Deka & Soundalgekar 1999;
Soundalgekar, Deka & Das 2003). The asymptotic solution for convection driven
by temporally periodic surface heating (purely periodic regime after transients had
damped out) was considered by Schetz & Eichhorn (1962). The corresponding purely
periodic regime for convection in circular ducts was considered by Barletta & di
Schio (2004).

Laboratory experiments of natural convection of unstratified fluid along vertical
plates subject to an impulsive heat flux showed that the one-dimensional solution
provided an appropriate description of the transient flow in regions where the
disturbance arising from the presence of the leading edge of the plate had not
yet propagated (Gebhart et al. 1988, and references therein). The one-dimensional
framework was also found to apply at the early stages of natural convection
in rectangular cavities with heated/cooled sidewalls (Schladow 1990; Armfield &
Patterson 1992; Schöpf & Patterson 1995). However, recent studies suggest that before
the arrival of this leading-edge effect, the one-dimensional framework can break down,
although the details of the instabilities are still being investigated (Patterson et al.
2002; Daniels & Patterson 1997, 2001). Stability analyses of the one-dimensioinal
steady-state solution obtained when ambient stratification is accounted for (Gill &
Davey 1969; Bergholz 1978) suggest that stratification may exert a stabilizing influence
on vertical plate convection.

Because of the ubiquity of stratified fluids in environmental and engineering flows,
stratification effects are of fundamental interest in fluid mechanics and heat transfer
research. Even in cases where the ambient fluid state is initially unstratified, a
convective motion itself can lead to self-stratification and associated changes in
the character of the motion, as in the case of enclosures with heated or cooled
sidewalls (e.g. Hyun 1984; Lin & Armfield 2001). The extension of the one-dimensional
natural convection framework to include ambient stratification is a relatively recent
development. Park & Hyun (1998) and Park (2001) considered flow of a stratified fluid
in the gap between two infinite parallel plates undergoing an impulsive (step) change
in plate heat flux. Their solution was obtained as an eigenfunction expansion in which
the dependence of the eigenvalues on Prandtl number and Rayleigh number revealed
a partitioning of transient behaviour into oscillatory and monotonic approaches to
steady-state conditions.

Shapiro & Fedorovich (2004a) considered the problem of convection in a stratified
flow adjacent to a single infinite vertical plate. Analytical solutions were obtained
by the method of Laplace transforms for a Prandtl number of unity for the cases
of impulsive (step) change in plate perturbation temperature, sudden application
of a plate heat flux, and for arbitrary temporal variations in plate perturbation
temperature or plate heat flux. Vertical motion in a stably stratified fluid was found
to be associated with a simple negative feedback mechanism: rising warm fluid
cooled relative to the environment, whereas subsiding cool fluid warmed relative to
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the environment. Because of this feedback, convective flows of a stably stratified fluid
along an infinite vertical plate driven by an impulsive change of plate temperature or
heat flux eventually approached a steady state, whereas the corresponding flows in
an unstratified fluid did not. In a companion paper, Shapiro & Fedorovich (2004b)
explored the Prandtl-number dependence of convection of a stably stratified fluid
along a single vertical plate both numerically and analytically, through the use of
a regular perturbation expansion and Laplace transforms. The developing boundary
layers were found to be thicker, more vigorous, and more sensitive to the Prandtl
number at smaller Prandtl numbers (< 1) than at larger Prandtl numbers (> 1). The
gross temporal behaviour of the flow after the onset of convection was found to be of
the oscillatory-decay type for Prandtl numbers near unity, and of the non-oscillatory-
decay type for large Prandtl numbers.

In the present paper, analytical solutions are obtained for laminar natural
convection flows of linearly stratified fluid along infinite vertical plates (§ 2) and
circular cylinders (§ 3) undergoing temporally periodic surface-temperature variations.
The plate and cylinder solutions are valid for arbitrary ambient stratification, forcing
frequency and Prandtl number. However, these solutions apply only to the purely
periodic regime, and do not describe the transient (start-up) stage of a flow started
from rest. In order to study this start-up flow stage and verify that the analytical
solutions provide the appropriate description of the terminal state of the convective
flow started from rest, a numerical model is introduced (§ 4). Because of the close
similarity in the behaviour of the plate and cylinder solutions in the periodic regime,
only numerical results for the plate are considered (§ 5).

2. Theory for convection driven by temporally periodic variations in surface
temperature of plates

The governing equations for one-dimensional (parallel) laminar natural convection
in the Boussinesq approximation are discussed in detail in Shapiro & Fedorovich
(2004a). Under the one-dimensional restriction, the Boussinesq form of mass
conservation is satisfied identically, while the horizontal equations of motion reduce
to statements that the horizontal components of the pressure gradient are zero
(pressure is horizontally uniform). The dimensionless vertical equation of motion and
thermodynamic energy equation (with or without a slight modification for pressure
work) for a linearly stratified fluid reduce to

∂W

∂τ
= θ +

∂2W

∂ξ 2
, (1)

∂θ

∂τ
= −W +

1

Pr

∂2θ

∂ξ 2
. (2)

Here, ξ is the horizontal (plate-normal) coordinate, τ is time, θ is perturbation
temperature (in the interest of brevity we will sometimes omit the word ‘perturbation’),
W is vertical velocity, and Pr is the Prandtl number (≡ ν/κ , where the kinematic
viscosity ν and thermal diffusivity κ are considered to be constant). These non-
dimensional variables (ξ , τ , θ , W ) are related to their dimensional counterparts (x, t ,
T ′, w) by,

ξ ≡ x
(gγ/Tr )

1/4

√
ν

, τ ≡ t
√

gγ/Tr, θ ≡ T ′

T ′
0

, W ≡ w

T ′
0

√
γ Tr/g, (3)
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where γ is the ambient stratification parameter [≡ dT∞/dz for Boussinesq flow
of liquids or gases; ≡ dT∞/dz + g/cp for a perfect gas with pressure work term
retained], z is height, T∞(z) is a linearly varying ambient temperature, T ′(x, t) ≡
T (x, z, t) − T∞(z), T ′

0 is the amplitude of the temperature perturbation at the plate
surface, and Tr is a constant reference temperature. The corresponding inviscid system
(dimensional version of (1) and (2) with ν = κ = 0) admits travelling waves of the form
w∝sin(kx −

√
gγ/Tr τ ), T ′ ∝cos(kx −

√
gγ/Tr τ ), and en masse temporal oscillations

of the form w ∝ sin(
√

gγ/Tr τ ), T ′ ∝ cos(
√

gγ/Tr τ ). These inviscid solutions have a
circular frequency equal to the Brunt–Väisälä (buoyancy) frequency

√
gγ/Tr (Kundu

& Cohen 2002). The non-dimensional value of this frequency (following (3)) is unity.
The plate is located at ξ = 0, and fluid fills the semi-infinite domain ξ > 0. The

no-slip condition is imposed at the plate surface, W(0, τ ) = 0. The perturbation
temperature at the plate surface is a temporal oscillation with circular frequency ω

and an amplitude of unity, θ(0, τ ) = cosωτ . This fixed dimensionless amplitude is
a consequence of the non-dimensionalization, and does not represent any loss of
generality. Since the thermal forcing originates at the plate surface, and the medium
is viscous, the disturbance is considered to vanish far from the plate, except for the
case of resonance (imposed frequency equal to the natural frequency of the inviscid
system, ω = 1), where an extension of the disturbance to infinity is found to be
unavoidable.

We seek solutions of (1) and (2) in the form of simple harmonic oscillations:

θ = Re[A(ξ ) exp(−iωτ )], (4)

W = Re[B(ξ ) exp(−iωτ )], (5)

where, A and B are complex-valued functions, and, without loss of generality, ω is
considered to be positive. Substitution of (4) and (5) into (1) and (2), yields two
coupled ordinary differential equations (fourth-order system),

−iωA = −B +
1

Pr

d2A

dξ 2
, (6)

−iωB = A +
d2B

dξ 2
. (7)

Applying the trial solutions A = c exp(µξ ) and B = a exp(µξ ) in (6) and (7) yields

c = −a(µ2 + iω), (8)

a = c(iω + µ2/P r). (9)

Eliminating a and c from (8) and (9), we obtain a quartic equation for µ:

µ4 + iω(Pr + 1)µ2 − Pr(ω2 − 1) = 0. (10)

Interpreted as a quadratic equation for µ2, (10) can be solved as

µ2
1 = − 1

2
i[ω(Pr + 1) +

√
4Pr + ω2(Pr − 1)2], (11)

µ2
2 = − 1

2
i[ω(Pr + 1) −

√
4Pr + ω2(Pr − 1)2], (12)
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Taking the square root of (11) and (12), and using
√

−i = ± (1 − i)/
√

2, we obtain
the four roots,

µ1 = − 1
2
(1 − i)

√
ω(Pr + 1) +

√
4Pr + ω2(Pr − 1)2,

µ2 = − 1
2
(1 − i)

√
ω(Pr + 1) −

√
4Pr + ω2(Pr − 1)2,

µ3 = −µ1, µ4 = −µ2.


 (13)

It is convenient to relate these roots to the (non-negative) constants k+ and k−, defined
by

k+ ≡ 1
2

√
ω(Pr + 1) +

√
4Pr + ω2(Pr − 1)2,

k− ≡ 1
2

√
|ω(Pr + 1) −

√
4Pr + ω2(Pr − 1)2|.


 (14)

Clearly, µ1 = −(1−i)k+, while the form of µ2 depends on the sign of Φ ≡ ω(Pr+ 1)−√
4Pr + ω2(Pr − 1)2. If Φ > 0, then µ2 = −(1 − i)k−, but if Φ < 0, then µ2 =

−(1 − i)ik− = −(1 + i)k−. It is straightforward to show that, for any non-zero value
of Pr, Φ > 0 is equivalent to ω > 1, while Φ < 0 is equivalent to ω < 1. Thus, we
can rewrite (13) as

µ1 = −(1 − i)k+, µ2 = −(1 − Si)k−, µ3 = (1 − i)k+, µ4 = (1 − Si)k−, (15)

where S is the sign function of ω − 1:

S = sgn(ω − 1) =

{
1, ω > 1,

−1, ω < 1.

The special case of ω = 1 will be considered at the end of this section.
To ensure that the disturbance vanishes far from the plate, the roots with positive

real part (µ3, µ4) must be rejected. Application of the no-slip conditionB(0) = 0 and
the normalization condition A(0) = 1, and use of (11) and (12) for µ2

1 and µ2
2 then

leads to the solution

θ =
1

2

[
1 − ω(1 − Pr)√

4Pr + ω2(Pr − 1)2

]
exp(−k+ξ ) cos(k+ξ − ωτ )

+
1

2

[
1 +

ω(1 − Pr)√
4Pr + ω2(Pr − 1)2

]
exp(−k−ξ ) cos(Sk−ξ − ωτ ), (16)

W =
1√

4Pr + ω2(Pr − 1)2
exp(−k+ξ ) sin(k+ξ − ωτ )

− 1√
4Pr + ω2(Pr − 1)2

exp(−k−ξ ) sin(Sk−ξ − ωτ ). (17)

For ω > 1 (S = 1, Sk−ξ > 0), the solution is composed of two waves that
propagate away from the plate and decay exponentially with distance from the plate.
Since the phases of these waves are k+ξ − ωτ and Sk−ξ − ωτ , we see that k+ and
k− can be interpreted as wavenumbers. Since k+ > k− > 0, the k− wave has a
larger wavelength (2π/k−), greater phase speed (ω/k−) and smaller attenuation factor
exp(−k−ξ ) (larger e-folding penetration distance 1/k−) than the k+ wave. These
wavenumbers, which appear in the solution of the plate problem and the upcoming
cylinder problem, are plotted as a function of Pr and ω (from (14)) in figure 1.

For ω < 1(S = −1, Sk−ξ < 0), the solution is again composed of a k+ and k− wave,
each of which decays exponentially with distance from the plate, with the k− wave
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Figure 1. Wavenumber as a function of Pr and ω: (a) k+ and (b) k−, as determined
from (14).

having a greater wavelength, greater phase speed and greater penetration distance
than the k+ wave. However, in this case, while the k+ wave still propagates away
from the plate, the k− wave propagates toward the plate. It can be shown that for
both ω < 1 and ω >1, the k+ and k− waves are each associated with positive group
velocities, that is, energy propagating away from the plate.

In the special case ω = 1, the roots µ of (10) are (1 − i)
√

(Pr + 1)/2,

−(1− i)
√

(Pr + 1)/2 and a double root 0. The general solution for A and B is a linear
combination of (i) the two exponential terms associated with these first two roots,
(ii) a constant term, and (iii) a term linear in ξ . It is clear that no particularization
of the general solution will allow it to satisfy all of the originally stated boundary
conditions. We interpet this as a case of resonance (forcing frequency equal to the
buoyancy frequency – the natural frequency of the inviscid system), and suggest that
the appropriate condition to relax is the condition that the disturbance vanishes at
infinity. In its place, we require that the disturbance be bounded at infinity. This
finiteness condition requires us to reject the linear term and the exponential term
associated with the root with positive real part. The solutions satisfying the remaining
(plate) boundary conditions are then found to be

θ =
cos τ

1 + Pr
+

Pr

1 + Pr
exp[−

√
(Pr + 1)/2ξ ] cos[

√
(Pr + 1)/2ξ − τ ], ω = 1, (18)

W =
sin τ

1 + Pr
+

1

1 + Pr
exp[−

√
(Pr + 1)/2ξ ] sin[

√
(Pr + 1)/2ξ − τ ], ω = 1. (19)

Thus, the resonance solution is comprised of an outward-propagating spatially
decaying wave and an en masse inviscid-like temporal oscillation.

3. Theory for convection driven by temporally periodic variations in surface
temperature of cylinders

Next, consider convection along infinite vertical cylinders with temporally periodic
variations in surface temperature. In cylindrical polar coordinates, the governing
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equations become

∂W

∂τ
= θ +

(
∂2

∂R2
+

1

R

∂

∂R

)
W, (20)

∂θ

∂τ
= −W +

1

Pr

(
∂2

∂R2
+

1

R

∂

∂R

)
θ. (21)

Here, we have adopted the same non-dimensionalization as in the plate problem
(namely, (3)), but with the spatial coordinate being the non-dimensional radial
coordinate R, which is related to the dimensional radial coordinate r by

R ≡ r
(gγ/Tr )

1/4

√
ν

. (22)

Similarly, the non-dimensional cylinder radius Rc is related to the dimensional cylinder
radius rc by

Rc ≡ rc

(gγ/Tr )
1/4

√
ν

. (23)

We again seek solutions in the form of simple harmonic oscillations,

θ = Re[A(R) exp (−iωτ )], (24)

W = Re[B(R) exp (−iωτ )]. (25)

Substitution of (24) and (25) into (20) and (21) yields the differential equations,

−iωB = A +

(
d2

dR2
+

1

R

d

dR

)
B, (26)

−iωA = −B +
1

Pr

(
d2

dR2
+

1

R

d

dR

)
A. (27)

Applying trial solutions of the form A= cZ0(iµR), B = aZ0(iµR) in (26) and (27),
where µ is an as yet undetermined parameter and Z0 is any Bessel function of
order zero (any solution of (d2/dR2 + 1/Rd/dR − µ2)Z0(iµR) = 0), we obtain the
compatability conditions,

c = −(i ω + µ2) a, (28)

a = (i ω + µ2/Pr) c. (29)

Since (28) and (29) are identical to (8) and (9) for the plate problem, the previous
expressions (10)–(15) for µ, k+, k−, including the special considerations for ω�1,
also apply to the cylinder problem. In view of these results, A and B can be
expressed as linear combinations of H 1

0 [(1 + i)k+R], H 1
0 [(S + i)k−R], H 2

0 [(1 + i)k+R],
and H 2

0 [(S + i)k−R], where H 1
0 and H 2

0 are Hankel functions of the first and second
kind (Bessel functions of the third kind). However, since the imaginary parts of the
arguments of these functions are positive, and only Hankel functions of the first kind
vanish when their arguments become infinite with positive imaginary part (Jahnke &
Emde 1945), we must reject the H 2

0 [(1 + i)k+R] and H 2
0 [(S + i)k−R] functions to ensure

that A and B vanish far from the cylinder. Application of the no-slip condition
B(Rc) = 0 and the normalization condition A(Rc) = 1, and use of (11) and (12) for µ2

1
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and µ2
2 then leads to the determination of A and B as

A =
1

2

[
1 +

ω(Pr − 1)√
4Pr + ω2(Pr − 1)2

]
H 1

0 [(1 + i)k+R]

H 1
0 [(1 + i)k+Rc]

+
1

2

[
1 − ω(Pr − 1)√

4Pr + ω2(Pr − 1)2

]
H 1

0 [(S + i)k−R]

H 1
0 [(S + i)k−Rc]

, (30)

B =
i√

4Pr + ω2(Pr − 1)2

[
H 1

0 [(S + i)k−R]

H 1
0 [(S + i)k−Rc]

− H 1
0 [(1 + i)k+R]

H 1
0 [(1 + i)k+Rc]

]
. (31)

To help identify the real and imaginary parts of (30) and (31), we express
these Hankel functions in terms of Kelvin functions (Abramowitz & Stegun 1964,
hereinafter referred to as AS). The arguments of these Hankel functions can be put in
the form of either (1 + i)x or (−1 + i)x, where x is a real number. Writing (− 1 + i)x
as x

√
2exp(3πi/4), and applying (9.9.2) of AS, yields

H 1
0 [(−1 + i)x] =

2

π
[kei0(x

√
2) − iker0(x

√
2)], (32)

where ker0 and kei0 are Kelvin functions of order zero. Since ker0(y) = N0(y) cos φ0(y)

and kei0(y) = N0(y) sin φ0(y), where N0(y) ≡
√

ker2
0 (y) + kei2

0 (y) is the modulus and
φ0(y) = arctan[kei0(y)/ker0(y)] the phase ((9.10.18) and (9.10.19) of AS), (32) becomes

H 1
0 [(−1 + i)x] = −i

2

π
N0(x

√
2)exp[iφ0(x

√
2)]. (33)

Writing (1 + i)x as x
√

2exp(πi/4) and using (9.1.40) of AS yields H 1
0 [(1 + i)x] =

H 2
0 [x

√
2exp(− πi/4)] where the overbar denotes the complex conjugate. Applying

(9.9.2) of AS to this latter term, and rearranging, we obtain

H 1
0 [(1 + i)x] = − 2

π
[kei0(x

√
2) + iker0(x

√
2)]. (34)

In terms of the modulus and phase functions, (34) becomes

H 1
0 [(1 + i)x] = −i

2

π
N0(x

√
2)exp[−iφ0(x

√
2)]. (35)

Equations (33) and (35) can be combined as

H 1
0 [(S + i)x] = −i

2

π
N0(x

√
2)exp[−iSφ0(x

√
2)]. (36)

Collecting results, we obtain the temperature and vertical velocity fields as

θ =
1

2

[
1 +

ω(Pr − 1)√
4Pr + ω2(Pr − 1)2

]
N0(k+R

√
2)

N0(k+Rc

√
2)

× cos[−φ0(k+R
√

2) − ωτ + φ0(k+Rc

√
2)]

+
1

2

[
1 − ω(Pr − 1)√

4Pr + ω2(Pr − 1)2

]
N0(k−R

√
2)

N0(k−Rc

√
2)

× cos[−Sφ0(k−R
√

2) − ωτ + Sφ0(k−Rc

√
2)], (37)
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W =
1√

4Pr + ω2(Pr − 1)2

N0(k+R
√

2)

N0(k+Rc

√
2)

sin[− φ0(k+R
√

2) − ωτ + φ0(k+Rc

√
2)]

− 1√
4Pr +ω2(Pr − 1)2

N0(k−R
√

2)

N0(k−Rc

√
2)

sin[− Sφ0(k−R
√

2) − ωτ + Sφ0(k−Rc

√
2)].

(38)

The wave characteristics in (37) and (38) are very similar to those in the plate
problem. Since φ0 is negative for all real values of its argument (see figures 9.11 and
(9.10.26) of AS), (37) and (38) indicate that the k+ wave propagates away from the
cylinder while the k− wave propagates away from the cylinder if ω > 1(S =1), but
toward the cylinder if ω < 1(S = − 1). Moreover, since the asymptotic (large argument)
form of φ0 is φ0(x) ∼ − x/

√
2, and this linear dependence of φ0 on its argument is

a good approximation throughout much of the range of its argument (figure 9.11
of AS), the phase of the k+ wave, − φ0(k+R

√
2) − ωτ + φ0(k+Rc

√
2) is approximately

k+(R − Rc) − ωτ , while the phase of the k− wave, −S φ0(k−R
√

2) − ωτ + Sφ0(k−Rc

√
2)

is approximately Sk−(R − Rc) − ωτ . These approximate phases are the exact phases
for the k+ and k− waves in the plate problem, (16) and (17), with distance from the
plate ξ written in place of distance from the cylinder R − Rc.

Equations (37) and (38) apply to cylinders of any size, including wires (very small
cylinders). They can be evaluated using standard ascending series and asymptotic
formulae for Kelvin functions. However, the forms of (37) and (38) simplify greatly if
we restrict attention to large cylinder radii. Using the first term asymptotic formulae
N0(x) ∼

√
π/(2x) exp (− x/

√
2), and φ0(x) ∼ − x/

√
2 valid for x → ∞ ((9.10.24) and

(9.10.26) of AS), (37) and (38) can be approximated well as

θ ∼ 1

2

[
1 +

ω(Pr − 1)√
4Pr + ω2(Pr − 1)2

]√
Rc

R
exp[−k+(R − Rc)] cos[k+(R − Rc) − ωτ ]

+
1

2

[
1 − ω(Pr − 1)√

4Pr + ω2(Pr − 1)2

]√
Rc

R
exp[−k−(R − Rc)] cos[Sk−(R − Rc) − ωτ ],

large k+Rc, k−Rc, (39)

W ∼ 1√
4Pr + ω2(Pr − 1)2

√
Rc

R
exp[−k+(R − Rc)] sin [k+(R − Rc) − ωτ ]

− 1√
4Pr + ω2(Pr − 1)2

√
Rc

R
exp[−k−(R − Rc)] sin[Sk−(R − Rc) − ωτ ],

large k+Rc, k−Rc. (40)

For locations close enough to the cylinder that the distance Ξ ≡ R − Rc is a small
fraction of the cylinder radius (Ξ/Rc 	 1), R/Rc = 1 + Ξ/Rc ≈ 1, (39) and (40) can be
further approximated as

θ ∼ 1

2

[
1 +

ω(Pr − 1)√
4Pr + ω2(Pr − 1)2

]
exp(−k+Ξ ) cos(k+Ξ − ωt)

+
1

2

[
1 − ω(Pr − 1)√

4Pr + ω2(Pr − 1)2

]
exp(−k−Ξ ) cos(Sk−Ξ − ωt),

large k+Rc, k−Rc;
Ξ

Rc

	 1. (41)



304 A. Shapiro and E. Fedorovich

W ∼ 1√
4Pr + ω2(Pr − 1)2

exp(−k+Ξ ) sin(k+Ξ − ωt)

− 1√
4Pr + ω2(Pr − 1)2

exp(−k−Ξ ) sin(Sk−Ξ − ωt),

large k+Rc, k−Rc;
Ξ

Rc

	 1. (42)

The large radius/small distance solutions (41) and (42) are identical to (16) and
(17), with distance from the cylinder Ξ in place of distance from the plate ξ , indicating
that for a cylinder of large radius, the flow behaves locally (near the cylinder) as if it
were near a plate. However, if for large cylinders we consider locations not close to
the cylinder (in the sense that Ξ/Rc is not much less than 1), we must use (39) and
(40), which is equivalent to the flat-plate solution (16) and (17) reduced by a factor
of

√
Rc/R.

Finally, we consider the special case ω = 1. Here, the general solution for A and B is
a linear combination of (i) H 1

0 [(1 + i)
√

(Pr +1)/2R] and H 2
0 [(1 + i)

√
(Pr +1)/2R], (ii) a

constant term, and (iii) a ln R term. To ensure the solution is bounded at infinity, we
reject the second of these Hankel functions and the ln R term. The solutions satisfying
the remaining (cylinder) boundary conditions are then found to be

θ =
cos τ

1 + Pr
+

Pr

1 + Pr

N0(k+R
√

2)

N0(k+Rc

√
2)

cos[−φ0(k+R
√

2) − τ + φ0(k+Rc

√
2)], ω = 1,

(43)

W =
sin τ

1 + Pr
+

1

1 + Pr

N0(k+R
√

2)

N0(k+Rc

√
2)

sin[−φ0(k+R
√

2) − τ + φ0(k+Rc

√
2)], ω = 1,

(44)

Again, we find that the resonance solution is comprised of an outward-propagating
spatially decaying wave and an en masse temporal oscillation.

4. Numerical model
A numerical model is applied to the initial-value problem in which a resting fluid

is suddenly subjected to a plate perturbation temperature in the form of a periodic
(cosine) wave:

θ(x, 0) = 0, θ(0, t) =

{
0, t = 0,

cos ωt, t > 0,

W (x, 0) = 0, W (0, t) = 0.


 (45)

These numerical results depict the transient (start-up) stage of the flow, as will be
shown below, and confirm that the analytical solutions of § 2 provide the appropriate
description of a later-stage periodic regime.

The numerical model used in this study was originally designed to support
work on instabilities and transition to turbulent regimes of natural convection in
a stably stratified fluid. However, the model can also be used to study laminar (one-
dimensional) natural convection along a vertical plate in cases where flow parameters
are consistent with maintenance of a laminar flow regime. The model solves the
three-dimensional Boussinesq equations of motion, thermodynamic energy and mass
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Figure 2. Contour plots of (a) θ and (b) W as functions of ξ and τ from the numerically
simulated case of Pr = 1 and ω = 0.5 for the first five periods of surface thermal oscillation.
At the top of (a) and (b) is a contour plot of the corresponding analytical solution for one
period of oscillation. Positive (and zero) contours are solid; negative contours are dashed.

conservation on a staggered Cartesian (x, y, z) grid stretched along the plate-normal
(x) direction. The three velocity components and the perturbation temperature field
are treated as prognostic variables, while the perturbation pressure field is diagnosed
from the elliptic equation that results from taking the three-dimensional divergence of
the equations of motion and enforcing the Boussinesq form of the mass conservation
equation. The model is patterned on the works of Fedorovich, Nieuwstadt & Kaiser
(2001) and Nieuwstadt (1990), and is summarized in Shapiro & Fedorovich (2004b).
This latter reference also describes a validation test of the computer code.

The values of the plate perturbation temperature and the physical parameters of
the problem (Tr , γ , ν, κ) used for the numerical simulations reported herein were such
that flow instabilities did not develop. At the computational boundary far from the
plate (large x), a zero gradient condition is imposed. Periodic boundary conditions
were imposed for all variables on the four x–y and x–z computational boundaries of
the domain. The output velocity and temperature perturbation fields were averaged
over the (y, z)-planes. However, as long as the flow remained laminar (which was
the case for all results reported herein), variations of these quantities in the (y, z)-
planes were negligible. Although the model itself is dimensional, the output is made
non-dimensional following (3) so as to facilitate comparisons with the analytical
results.

5. Examples of convection along a vertical plate
We first consider cases of various forcing frequencies with Pr= 1. Figure 2 depicts

contour plots of θ and W for ω = 0.5, a case where the forcing frequency is less than the
natural frequency of the inviscid system. In this figure, the numerical solution for the
first five periods of thermal oscillation is presented, together with the corresponding
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Figure 3. As in figure 2, but for Pr = 1 and ω = 2.

analytical solution for the periodic regime. In the region of the main disturbance, near
the plate (say, ξ < 3), the numerical solution approaches the analytical solution within
just a few oscillation periods. Far from the plate, where the disturbance becomes
weak, the negative slopes of the zero contours in the analytical solutions for θ and
W indicate an inward-propagating wave. Such negative slopes begin to emerge in the
numerical solution at the later times in the figure (and become even more evident at
times later than those depicted here.)

Figure 3 presents the numerical and analytical contour plots for Pr =1 and ω =2,
a case where the forcing frequency is greater than the natural frequency. We again see
a rapid approach of the numerical solution to the analytical solution in the region
of the main disturbance, near the plate, with a slower approach to the analytical
solution in the regions further from the plate. In this case, the positive slopes of the
zero contours for θ and W far from the plate indicate an outward-propagating wave.

The case with Pr =1 and forcing frequency equal to the natural frequency, ω = 1
(the resonance case), is depicted in figures 4–6. The contour plots of θ and W presented
in figures 4 and 5 show that the numerical solution approaches the analytical solution
(top of figure 5) at large ξ relatively slowly. The periodic regime is characterized by
en masse temporal oscillations of the entire fluid, with the exception of the boundary
layer in the immediate vicinity of the plate whose structure is dominated by the
no-slip condition. The slow convergence of the numerical solution to the analytical
solution at large ξ is highlighted in figure 6.

Finally, we present contour plots of the analytical solutions for Pr = 0.71, 1 and
7.1 for the case of a small forcing frequency, ω = 0.1 (figure 7), and a large forcing
frequency ω = 10 (figure 8). The Prandtl numbers 0.71 and 7.1 are the values for dry
air at a temperature of 30 ◦C at atmospheric pressure and pure water at a temperature
of 20 ◦C at atmospheric pressure, respectively (Kundu & Cohen 2002). In figures 7
and 8, we see that both the thickness of the thermal boundary layer and the intensity
of the vertical motion increase with decreasing Prandtl number. This behaviour is
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Figure 4. Contour plots of (a) θ and (b) W as functions of ξ and τ from the numerically
simulated case of Pr = 1 and ω = 1 for the first five periods of surface thermal oscillation.
Positive (and zero) contours are solid; negative contours are dashed.
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Figure 5. As in figure 4, but for selected later time periods. At the top of (a) and (b) is a
contour plot of the corresponding analytical solution for one period of oscillation.

qualitatively similar to what is found in unsteady convective flows induced by an
impulsive change in the surface temperature of a vertical plate immersed in a stably
stratified fluid (Shapiro & Fedorovich 2004b) and in the corresponding steady-state
flows (e.g. Gill 1966; Bergholz 1978). The generally negative slopes of the zero
contours of θ and W far from the plate in the ω = 0.1 solutions (figure 7) indicate
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Figure 7. Analytical solutions for (a) θ and (b) W as functions of ξ and τ for ω = 0.1
(i) Pr = 0.71; (ii) Pr = 1; (iii) Pr = 7.1. Positive (and zero) contours are solid; negative contours
are dashed.

an inward-propagating wave. In the case ω = 10 (figure 8) the positive slopes of
the zero contours of θ and W far from the plate indicate an outward-propagating
wave. We also see that in the lower panels of figures 8(a) and (b) (i.e. for Pr =
7.1), the zero contours for θ are steeper and packed closer together near the plate
than far from the plate, while the slopes and spacing of the zero contours for W are
relatively insensitive to distance from the plate. To explain this behaviour, we first
note that for Pr = 7.1 and ω = 10, the k+ wavenumber is almost three times larger
than the k− wavenumber (figure 1), hence the phase speed for the k+ wave is only
about 30% of the speed of the k− wave (so the slope of the zero contours in the
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Figure 8. As in figure 7 but for ω = 10.

(ξ , τ )-plane should be steeper for the k+ wave than the k− wave). However, the extent
to which these wave characteristics become manifest depends, in part, on the relative
magnitudes of the coefficients in front of the k+ and k− wave terms in (16) and (17).
It can readily be shown that for W , the numerical factors in front of the k+ and k−
wave terms are equal, but that for θ , the numerical factor in front of the k+ wave
term is approximately 1000 times larger than the factor in front of the k− wave term.
Accordingly, the k+ wave characteristics will be much more apparent in the θ field
than in the W field, at least near the plate (since the penetration distance of the k−
wave is greater than that of the k+ wave, the k− wave will eventually dominate far
from the plate in both θ and W solutions).

6. Summary
Analytical solutions of the viscous Boussinesq equations of motion and

thermodynamic energy are presented for the laminar natural convection flow of
a linearly stratified fluid along infinite vertical plates and circular cylinders with
temporally periodic surface-temperature variations. Although our focus has been
on the fundamental behaviour of a class of simple natural convection flows, the
solutions may be of practical interest to those concerned with heat transfer problems
in reciprocating flows; oscillatory flows in which the amplitude of the oscillatory
velocity is greater than that of the time-mean velocity (see review article by Zhao &
Cheng 1998).

Our solutions are considered to be valid for the purely periodic regime, that
is, for times long enough after start-up that transient effects have dissipated. The
behaviour of the solutions are qualitatively similar for plates and cylinders, and are
crucially dependent on the value of the frequency of the imposed thermal oscillation.
For forcing frequencies greater than the natural frequency of the inviscid system
(buoyancy frequency), the disturbance consists of two outward-propagating waves.
For forcing frequencies less than the natural frequency, the disturbance is comprised of
an outward-propagating wave and in inward-propagating wave, a scenario in which
the conventional radiation condition is not appropriate. In both cases, the waves
decrease exponentially with distance from the surface. The case where the forcing
frequency is equal to the natural frequency results in en masse temporal oscillations of
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the fluid. In this resonance case, the disturbance extends an infinite distance from the
surface. Within this general behavioural framework, there is additional complexity
associated with the values of the Prandtl number. In particular, the values of the
Prandtl number and forcing frequency together determine the extent to which one or
other of the two waves dominates the solution for θ (but not W) near the plate. The
analytical results were complemented with numerical simulations initialized from a
state of rest. The numerical results suggest that the analytical solutions do provide
appropriate descriptions of impulsively started oscillatory convection after sufficiently
long periods of time have elapsed.
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