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e Place and role of planetary atmospheric
boundary layer (ABL) in Earth’s atmosphere;

o Effects of temperature/density stratification In
the ABL;

e Diurnal cycle of the ABL;

e Structure of convective, neutral, and stably
stratified (stable) ABLs;

e Interactions of ABL with underlying surfaces;

e Interactions between ABL and free
atmosphere.



Place of planetary ABL Iin Earth’s atmosphere
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Adapted from Meteorology for Scientists and Engineers A Technical
Companion Book to C. Donald Ahrens' Meteorology Today, 2nd Ed., by
Stull, p. 65. Copyright 2000. Reprinted with permission of Brooks/
Cole, a division of Thomson Learning: www.thomsonrights.com.
Fax 800-730-22150.



Planetary ABL flows

conflate four major nasty features of geophysical flows:

(1) turbulence, (1) density stratification,
(111) rotation, (iv) thermal forcing.
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Effect of stratification in atmosphere

Wallace and Hobbs (2006)
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Heat exchange in ABL flows
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[Adapted from Meteocrology for Scientists and Engineers, A Technical Companion beoaok
To C. Donald Ahrens' Heteorology Today, 2nd Bd., by Stull, p. 37. Copyright 2000. Reprinted
with permission of Brooks/Cole, a division of Thomson Learning: www. thomsonrights.com.
Pax 800-T730-2215.])



ABL stability parameters

Convenient variable to account for combined effect of heat
and moisture on static stability is buoyancy

b=g(6,-6,)/6.,
where 6, = 8+0.616.q Is the virtual potential temperature.

(Turbulent vertical kinematic) buoyancy flux is w'b".

Commonly used stability parameters:

w32
¢ =z/L,where L:—( uwf)l Is Obukhov length (scale).
KW
w'b’ b / 0z

Flux Ri number Ri; = , gradient Ri number Ri =

u'w'(ou / oz) (ou/ 82)2
represent ratio of buoyancy to shear turbulence production rates.
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Daytime convective boundary layer (CBL)

In its dry version: a turbulent boundary layer primarily driven
by heating from below with a secondary wind-shear forcing
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Potential temperature field in the inversion-capped CBL (DNS visualization)
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Conventional nocturnal stable ABL (SBL)

after John Wyngaard
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Surface energy balance components
Sensible heat flux:

F, =pC W' = pC Q,
Latent heat flux:
F =LE=Lpw0q'=L,pD,

Approximate form of surface (s) energy budget:

F'=F, +F.,+F.

x
F - surface net radiative flux; FG - ground heat flux.



Surface energy balance
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Possible surface energy balance scenarios
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Effect of stability of wind variation with
height in the lower portion of ABL
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Variation of wind speed with local time

In ABL over land
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Adapted from Meteorology for Scientists and Engineers, A Technical
Companion Book to C. Donald Ahrens' Meteorolegy Teoday, 2nd Ed., by
Stull, p. 77. Copyright 2000. Reprinted with permission of Brocks/
Cole, a division of Thomson Learning: www.thomsonrights.com.
Fax 800-730-2215.



Development of CBL
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Adapted from R. B. Stull, An Introduction to Boundary Layer
Meteorology, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1988, Fig. 11.10, p. 452, and Fig. 13.12, p.
564, Copyright 1988 Kluwer Academic Publishers, with kind
permission of Springer Science and Business Media.



ABL interaction with free atmosphere
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CBL development in evolving atmosphere: model study

Gibbs et al. (2011)




CBL development in adryline environment
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CBL structure in adryline environment
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Figure 4.2
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: Structure function parameter of the refractive index estimates on June 8. 2007.

Top: estimates from the vertical beam of the radar simulator. Middle: LES-profile at center

of domain. Bottom: estimates from the vertical beam of the SGP ACRF radar.



CBL development in a cold-front environment
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Structure of simulated idealized sheared CBL
as viewed across horizontal convective rolls
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