Physical modeling of atmospheric boundary layer flows
Part I: Overview of modeling concepts and techniques

Part 1. Modeling neutrally stratified boundary layer flows
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e Place of physical modeling in the triad of approaches to study
atmospheric boundary layer flows

e Concept of physical modeling: prototype versus model
e Commonly employed laboratory facilities and techniques
¢ \Wind tunnel modeling of neutrally stratified boundary layers
e Methodology of generating neutral boundary layer flows in wind tunnels
e Review of turbulent flow properties over rough and smooth surfaces
e Similarity requirements; comparisons with atmospheric data
e Tracer dispersion from a line source: numerical model evaluation

e Summarizing remarks



Triad of approaches in atmospheric boundary layer studies

I. Field observations/measurements

e In situ/lcontact measurements
e Remote sensing techniques

I1. Physical/laboratory models

e Laboratory tank (thermal and saline) models
o Water channel/tunnel/flume models

e Wind tunnel (stratified and neutral) models

I11. Theoretical/numerical technigues
e Theoretical/analytical models
e Numerical models/parameterizations

e Numerical simulations (direct and large-eddy)



|. Field observations/measurements
In situ/contact measurements and remote sensing techniques

Single global asset: it is real!

Hard or impossible to

e separate different contributing forcings/mechanisms

e match temporal/spatial requirements for retrieval of statistics
e control external forcings and boundary conditions

e obtain accurate and complete data at low cost



|1. Physical/laboratory models
Laboratory tanks, water channels, wind tunnels

Pros:

e High level of complexity of
modeled flows

e Controlled external/boundary
parameters

e Repeatability of flow regimes

e Possibility to generate well-
documented data sets for evaluation
of numerical models/simulations

Hard or impossible to

e reproduce several contributing
forcings in combination

e sufficiently match scaling/similarity
requirements in order to relate the
modeled flow to its atmospheric
prototype

e find a reasonable balance between
the value of results and cost of
facility




I11. Theoretical/numerical techniques

Analytical models, numerical models/parameterizations, numerical simulations
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Pros:
o Availability at a relatively low cost
e Capability to generate instantaneous flow fields

e Accounting for processes within relatively broad ranges of
temporal and spatial scales

Hard or impossible to

e reproduce flow regimes with realistic environmental settings

e evaluate precisely effects of subgrid/subfilter/ensemble
turbulence closures

e separate numerical artifacts from actual physical features of the
modeled/simulated flows



Wind tunnel modeling of neutral atmospheric BL flows
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Design features of neutral boundary layer wind tunnels
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Basic properties of a wall-bounded turbulent flow

Consider turbulent flow that is parallel and horizontally homogeneous
In x direction (an idealization of a wind tunnel flow far away from the
Inlet) with mean (in Reynolds sense) velocity in this direction u(z).

Prandtl concept of mixing distance/length ['. particle that carries
momentum between flow levels separated by distance /' instantly attributes
momentum to surrounding air as It arrives to the destination level.

First-order approximation: u(z+1") =u(z)+ (ouloz)!",
u(z—1"=u(z)—(ouloz)l', or,

In terms of velocity fluctuations, u'(z+1")=u(z+1")—u(z) =1"'(0ul0z),
u'(z—=1Y=u(z=1"—u(z)=-1"'(0uloz).

Prandtl also supposed: w'=—I"'(ou/oz)sign(u').

Multiplying w' with »' and averaging, we come to u'w'=—I°(0u/0z)*,
—1/2
where /=/" is the mixing length at level z, which may be interpreted as

characteristic integral turbulence length scale for momentum exchange
at level z.



Friction velocity and logarithmic wind profile

Another hypothesis/finding by Prandtl: / o« z.
Vertical kinematic momentum flux is therefore: u'w'ec —z°(6u/ 0z)°.
Von Karman constant « is a proportionality coefficient between / and z:

I=kz, u'w'=—x°z"(0ul 0z)*.

From the flux-profile parameterization (Boussinesq analogy):

u'w'=—k(ouloz), where
k 1s the eddy viscosity (turbulent exchange coefficient for momentum:
k=x(—u'w)?z=x22%(0ul &2).
Near the wall u'w' is approximately height-constant and may be

conveniently represented through the velocity scale u,=(—u'w")"* called
the friction velocity. Therefore, k =xu,z or k=u,l.

Also: oul oz =u, l(xz), which provides the logarithmic velocity profile in
the near-wall region of the neutral boundary layer:

u=u,/x)inz+C.



Aerodynamically smooth and rough surfaces

Based on Reynolds-number criterion Re=u,0,/v ~1 for laminarization

of the flow close to the wall, one may expect that at distances from the
wall of the order and less than &, ~v/u,, the molecular shear stress

ultimately dominates the turbulent stress: —u'w' < v(ou/0z).

Experimental data show: o, = 5v/u,. The layer defined in this manner is
called the viscous sublayer.

Smooth surface: surface roughness elements of characteristic size 4, are
deployed in the viscous sublayer: 4. <« §,.

Rough surface: 4. > 6,.

Laboratory experiments show that surface may be considered
aerodynamically smooth for

h <5viu,,
and aerodynamically rough when
h >75v/u,.



Wind profile over smooth and rough surfaces

Smooth-wall case: developed turbulent flow with u=(u,/x)Inz+C IS
realized at distances considerably larger than the length scale 6, ~ v/u,.

Rough-wall case: flow Is turbulent already in the immediate vicinity of
surface roughness elements, with mean flow velocity vanishing (x=0) at
some level close to 7, .

One may consider a reference level z, close to the surface, where u=0,
u=(u,/x)In(z/z,).

Quantity z, is called the aerodynamic surface roughness length or the
surface roughness length for momentum.

Smooth-wall z, is retrieved from u/u, = (1/x)In[z/(v/u,)]+C,, where
parameter C, = (1/x)In[(v/u,)/z,] Is about 5 (experiment):

-kC, ~
zo=e “viu,=~0l/u,.

Rough-wall z, is a function of the surface geometry, involving 4. as one
of parameters; generally speaking, z, is growing with # .



Interior of a modern neutral BL wind tunnel (WOTAN)
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Wind profile approximations used in wind tunnel studies

Velocity profile above the rough surface starts to follow the logarithmic
law only at some distance away from the surface, at z>>z,. In this sense,

the surface roughness length is an asymptotic parameter rather than a
limiting point of the observed wind profile.

In order to make logarithmic wind profile applicable in a broader range of
z close to the surface, it is often used with another parameter, the so-called
displacement height d,;:

u, , z—d,

u=—In
K z,

Along with log law, another analytical representation of wind profile is
used (primarily, in wind engineering), the so-called power law form:

u(Z):urefEZZ_dcol, j !
ref  “0

where u_. IS u value at z=z

and o <1 Is an empirical exponent.

ref



Similarity criteria for wind tunnel modeling of neutral BL flows
Length scales: L=z, L=d,, L,;=9,..

Criteria: (L, /L,),.qa=(L, /L,)

nature

Wind profile: S, = u() :( z2=d, j S, = Ku(z) _jp 2=

U ot Zyef — dO Us 2y

=5

I nature

Criteria: S

A model S nature’ " /model

Turbulence intensity: I, = o, /u., and spectra: S . = kS, (k)/o?.

Crlterla ]lmodel ]znature’ Snimodel = Snznature
- . M*ZO
Surface roughness in the model:  Re, = >>1,
| 24

1/2
where u, :(—u'w' ) .
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Scaled mean wind profiles in WOTAN
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ateral homogeneity of mean flow in WOTAN
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Longitudinal velocity component spectrum in WOTAN
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Vertical turbulent kinematic momentum flux in WOTAN
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Flow parameters in the neutral boundary layer tunnel of UniKA
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Dispersion of passive scalar from a ground line source
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Fig. 6. Actual line source design. (a) Transverse cross section; (b) Longitudinal cross section; and
ic) Capping brass bar,

Schematic of the source (red line) Design of the line source after
deployed in the UniKA neutral WT Meroney et al. (1996)
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Longitudinal and vertical profiles of normalized concentration
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Numerical model of dispersion from a ground line source

Balance equation for concentration ¢ of a passive tracer is solved in a
x-z plane perpendicular to the source located at x=0, z=0:

oc O oc
=——K —4+7 .
u(2)5 0(2)5 ]

X Oz z

Mean velocity profile is assumed to be logarithmic: u(z) = “Inz.
K z

Eddy diffusivity linearly depends on height as K (z) = ku.z/Sc,, where
Sc, Is the turbulent Schmidt number.

Boundary conditions: dc/oz=0 at z=z, and c=0 at z =0,.
Friction velocity is determined from w. = xu, /(In 6, / z,).

I, =0, I(Ax,Az,) Is the source function, where Ax,Az, Is the cross-section

area of the numerical grid cell surrounding the source. Elsewhere in the
model domain outside this cell: 7, =0.

Numerical solution: implicit integration over x and factorization over z.



Model verification against the wind tunnel data
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