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Convective boundary layer (CBL) along a heated surface 
Dry (or clear) atmospheric CBL is a turbulently mixed boundary layer 
with the turbulence dominantly forced by heating from below and wind 
shear representing the secondary turbulence forcing 
 

 

Schematic of temperature and 
wind fields in the atmospheric 
CBL (after John Wyngaard) 

 

  
 

 CBL without wind shear CBL with wind shear 
 

Potential temperature field in the inversion-capped CBL (DNS visualization) 



Place of CBL in the diurnal cycle of 
atmospheric planetary boundary layer 

 



Laboratory tank modeling of CBLs 

  

Heated water tank Saline water tank 
Replica of Deardorff and 

Willis convection tank 
enacted in EPA (USA) 

“Upside-down” 
convection tank in use at 

CSIRO (Australia) 



Wind tunnels to study stratified boundary layers 
Colorado State University (USA) Karlsruhe University (Germany) 

 

University of Surrey (UK) Kyushu University (Japan) 



Deardorff et al. water tank model of shear-free CBL (1960-80s) 

 
From Sorbjan, Z., 1989: Structure of the Atmospheric Boundary Layer, Prentice Hall, 317 pp. 



Willis and Deardorff convection water tank 
 

 

Technical data 
Dimensions: 1.14×1.22×0.77 m3 

Insulation: 5-cm thick styrofoam 
slab at the top 

Sidewalls: 1.9-cm thick plexiglass 
Bottom: 1.25-cm aluminum plate 
Bottom heating: circulating water 

heat exchanger with 10 
channels at the underside of 
the bottom plate is used to 
minimize horizontal 
temperature gradients along 
the bottom of the tank 

Re~4200, Reλ~140, Ra~1011



Temperature and heat flux profiles in the water tank CBL 
Willis and Deardorff (JAS, 1974) 

  

Deardorff’s (1970) convective scales 
Velocity 1/3

* =( )s iw Q zβ ; Length iz ; Temperature * *= /sT Q w , 

where = / rg Tβ  and sQ  is the surface kinematic heat flux 



Water tank studies of convective entrainment I 
Deardorff et al. (JFM, 1974) 

  
Temperature and heat flux profiles in the entraining CBL 



Water tank studies of convective entrainment II 

  
Evolution of entrainment parameters 
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Water tank studies of dispersion in the CBL 
Willis and Deardorff (Atmospheric Environment, 1978) 

 

Source is at z/zi=0.07 in the left plot and at z/zi=0.5 in the right plot. 
Heights are normalized by zi, lengths by (ziU)/w*, and concentration 
values by Es/(zi

2U), where U is the mean wind velocity and 
Es [L3 T-1] is the source strength. The origin of the x axis is at the 
source location. 



Wind tunnel model of a horizontally evolving atmospheric CBL 
Experimental setup in the thermally stratified wind tunnel of UniKA 

L=10mINLET

ΔT

z
y

x

u10, T10

u(z)

T(z)

Δu

u9, T9

u1, T1

u2, T2

u3, T3

u4, T4

u5, T5

u6, T6

u7, T7

u8, T8

B   o    t    t    o    m       h    e    a    t     i    n    g
H=1.5m

OUTLET

External flow

Mixed layer

Interfacial layer

u(z)

T(z)

s u r f a c e  r o u g h n e s ss u r f a c e  r o u g h n e s s s u r f a c e s u r f a c e  r o u g h n e s s

 
 

Richardson numbers: 2
*Ri T iw z Tβ −

Δ = Δ  and 2 22
*RiN iN z w −=  

Shear/buoyancy forcing ratio: * */u w , where 1/ 3
* ( )s iw Q zβ=  

 Atmospheric CBL: RiΔT <100 RiN <100  u w* */ <1 
 UniKA wind tunnel: RiΔT <10  RiN <20  u w* */ ≈0.3 
 Water tank, D-W: RiΔT =15  RiN =100  u w* */ =0 (shear-free CBL) 

2 ( / )N dT dzβ=

sQ  sQ  

iz  



UniKa thermally stratified wind tunnel 
 Interior of the tunnel Exterior of the tunnel 

  
 Visualized CBL flow Visualized neutral BL flow 

  



Flow evolution in the UniKa wind tunnel model of CBL 
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Mean temperature Velocity fluctuations 
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Sublayers within the modeled CBL and flow evolution stages 

Mixed layer 

Surface layer 

Entrainment zone 

Transition layer 

Stably stratified 
outer layer 



Large eddy simulation of horizontally evolving CBL 
Parameter Setting 
Domain size 10×1.5×1.5m3 (UniKA WT test section) 
Grid 400×60×60 
Surface kinematic temperature flux 1 K·m·s-1 
Temperature stratification above CBL 33 K·m-1 
Time advancement Leapfrog scheme with a weak filter 

Outflow boundary conditions Radiation conditions for prognostic 
variables + mass-flux outflow correction 

Lateral and top boundary conditions No-slip + log wall law for velocity; zero-
gradient for other prognostic variables 

Inflow boundary conditions 

Preset stationary fields of mean velocity 
and temperature with superimposed non-
correlated random fluctuations of 
prescribed r.m.s. magnitude  

Bottom boundary conditions 

No-slip for velocity; zero-gradient for 
other prognostic variables; Monin-
Obukhov similarity functions 
implemented locally to relate surface 
fluxes and gradients 

Subgrid turbulence closure Subgrid TKE-based (Deardorff 1980) 



Visual comparison of simulated and modeled (WT) flows 

 



Changes of flow structure across the inversion layer 

 



Evolution of flow fields in the wind tunnel CBL: LES data 

 



Role of inflow conditions in transition to well-mixed CBL 
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Thin lines: WT (3 windows); Bold lines: LES (shear-free CBL); Open symbols: 
LES of WT CBL (3 windows); Filled squares: atmosphere; Asterisks: water tank. 



Joint probability density of T′ and w′ in the WT CBL 

w'

T'

warm
down-
drafts

warm
up-
drafts

cold
down-
drafts

cold
up-
drafts

w' / w*

T'
 / 

T *

z / zi = 0.03

 

w' / w*

T'
 / 

T *

z / zi = 0.08

 
 

w' / w*

T'
 / 

T *

z / zi = 0.25

 

w' / w*

T'
 / 

T *

z / zi = 0.50

 

w' / w*

T'
 / 

T *

z / zi = 0.75

 
 

w' / w*

T'
 / 

T *

z / zi = 0.83

w' / w*

T'
 / 

T *

z / zi = 1.00

 

w' / w*

T'
 / 

T *

z / zi = 1.25

 

 

Density distributions of T′ and w′ at x=3.98 m 



Velocity and temperature spectra in the wind tunnel CBL 

 
Solid lines: spectra of (a) longitudinal velocity, (b) vertical velocity, and (c) temperature 
in the wind tunnel CBL. Stars: water tank spectra of Deardorff and Willis (1985). Dashed 
lines: LES of shear-free CBL of Schmidt and Schumann (1989) 
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Turbulence anisotropy and dissipation rates in the WT CBL 
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Spectral ratio /w uP P  at different dimensionless elevations 

ε zi / w*
3

0.0

0.5

1.0

1.5

z 
/ z

i

0.01 0.1 1 10

a)

 εTzi / (T*
2w*)

0.0

0.5

1.0

1.5

z 
/ z

i

0.01 0.1 1 10 100 1000

b)

 

TKE dissipation rate (a), and temperature fluctuation destruction rate (b). Tunnel: circles. 
Atmosphere: filled squares. Tank: stars. Ocean: empty squares. LES of shear-free CBL: lines 



Effect of elevated shear on the CBL deepening (WT data) 
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Without elevated shear: lines. In the presence of positive elevated shear: points. 
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Using LES to study a variety of CBL flow regimes 



Shear versus entrainment in control of the CBL growth 
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Combining WT modeling and LES to study dispersion in the CBL 
 Wind tunnel LES 
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Point source is at the ground level. The origin of the x ordinate is at the source 
location. The capping-inversion and shear-zone elevation at x=0 is 0.3 m. 



Comparison with water tank data of Willis and Deardorff 
Water tank 

  

Wind tunnel 
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Using WT and LES output to feed Lagrangian dispersion model 

 

Original (dashed lines) and 
new (solid lines) turbulence 
parameterizations in the 
Rotach et al. (1996) 
Lagrangian dispersion model. 

Markers are WT data, dotted 
lines are LES data. 

 

Lagrangian model 
predictions of plume 
centerline concentration at 
different x downwind of 
the ground source. 

Solid lines – with new, 
dashed lines – with old 
parameterizations 

Markers are WT data and 
short-dashed lines are LES 
data. 
 



Effect of source elevation on dispersion pattern in CBL (LES visualization) 

 / 0s iz z =  (ground) 
 

 / 0.33s iz z =  
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Fumigation in the CBL modeled in a saline water tank 
Hibberd and Luhar (Atmospheric Environment, 1996) 

 



Dispersion of buoyant puffs in a thermal water tank CBL 
Snyder et al. (Boundary Layer Meteorology, 2002) 
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"Observe the motion of the surface of the water, which resembles that of hair, which 
has two motions, of which one is caused by the weight of the hair, the other by the 
direction of the curls." Leonardo da Vinci 


