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Place of SBL in the diurnal cycle of 
atmospheric planetary boundary layer 

 



Comparing structural features of CBL and SBL 
after John Wyngaard and Roland Stull 

  

  

CBL (daytime) SBL (nighttime) 



Numerically simulated SBL: mean flow profiles 
from LES intercomparison study by Beare et al. (BLM, 2006) 

  

Top: with 2-m resolution. Bottom: with 6.25-m resolution. 



Numerically simulated SBL: turbulent fluxes 
from LES intercomparison study by Beare et al. (BLM, 2006) 

  

Top: with 2-m resolution. Bottom: with 6.25-m resolution. 



Typical setups for wind tunnel modeling of SBL flows 

 With θ∞=const 

With preshaped θ profile 



Stratified wind tunnel of Kiushu University (Japan) 
Courtesy of Yuji Ohya 

 



Thermal wind tunnel of the University of Minnesota 
Courtesy of Fernando Porté-Agel 

 

Test section: 17 m x 1.7 m x 1.7 m 

17 m 

● Air temperature control:  5C – 45C 

● Floor temperature control:  5C – 45C 

● Different sections of the floor can be set to 
    different temperatures in the range 5-45 C 



Monin-Obukhov (M-O) similarity in stable surface layer 
Turbulence scales: velocity u∗=

1/ 2( ' ')u w− , temperature ' ' /w uθ θ∗ ∗= − , 
humidity ' ' /q w q u∗ ∗= − , buoyancy ' ' /b w b u∗ ∗= − = 0.61gqβθ∗ ∗+ . 

M-O hypothesis and universal functions 
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Approximations of similarity functions 
Businger et al.: ( ) 1 4.7mϕ ζ ζ= + , ( )hϕ ζ =0.74 4.7ζ+ , κ =0.35 

Dyer et al.:  ( ) 1 5mϕ ζ ζ= + , ( / )h z Lϕ =1 5ζ+ , κ =0.4 (originally, 0.41) 



Turbulent diffusivities and Richardson numbers 
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with Ri ( / )Rif hk k= =Ri/Prt , characterize ratio of buoyancy to shear 
contributions to the TKE production. 



Relationships between different stability parameters 
In terms of Dyer’s functions, with ζ =z/L≥0: 

Ri=Ri f = /(1 5 )ζ ζ+ ≥0. 

Inverse relationship, ζ =Ri/(1 5Ri)− , yields Ri=0.2 as a critical Ri value. 
It corresponds to the infinitely large positive ζ  or, for a given z, 
infinitesimal positive L that is the case of extreme stability when 
turbulence cannot exist. 

Also, for ζ =z/L≥0: 

k (z)= hk (z)= (1 5Ri)u zκ ∗ − . 

Other useful relationships between stability parameters and universal 
functions: 
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SBL flow in experiments of Ohya and Uchida (BLM, 2003) 

 

Re U
δ

δ
ν
∞= ,  2

( )Ri s

Uδ
β θ θ δ∞

∞

−
=  



Flow regime changes with increasing stability 

 



Mean flow parameters in SBL of Ohya and Uchida 

 



Turbulence statistics in SBL of Ohya and Uchida 

 

 



Gradient Ri numbers in SBL of Ohya and Uchida 

 



Turbulence statistics as functions of Ri in SBL of Ohya and Uchida 

 



Wind tunnel models of BL flows within/above … 

URBAN →  and 

FOREST →  canopies 



Main structural features of urban canopy layer 

 

 

From Mestayer, P. G., and S. Anquetin, 1995: Climatology of cities. In Diffusion and Transport of 
Pollutants in Atmospheric Mesoscale Flows, A. Gyr and F.-S. Rys (Eds.), Kluwer. 



Characteristic urban canopy: Nantes, France 
after Petra Kastner-Klein et al. (2000-2004) 

Plan  WT model  

Building height distribution in the model  



Measurement locations and flow parameters in Nantes model 

  

 



Normalized momentum flux in Nantes model 

 



Normalized mean velocity profile in Nantes model 

 



Modeling flow in/above (under?) forest canopy on a hill 
after John Finnigan et al. (2007-2008) 

Prototype  

Wind tunnel model  



Decoupling of flow in the canopy from the outer flow 
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“Heat transfer to canopy elements is via 
molecular diffusion whereas momentum 
transfer is effected by pressure. The ratio 
of their efficiencies is r~O[0.1]” 
Harman and Finnigan (2007) 
 
 
← Wind tunnel data 



Thermal effects in forest canopy flow over a hill 
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Wind tunnel model of forest canopy flow 
A canopy hill model with a properly scaled 
boundary layer in a large BL wind tunnel

 
Heated canopy in place

 



Re-number effects in velocity and momentum flux fields 
Uz/Uc over unheated surface

red U0~10ms-1, blue U0~0.3ms-1
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-uwz/uwc over unheated surface
red U0~10ms-1, blue U0~0.3ms-1
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Upwind propagation of thermally induced disturbance 
Uz/U0 over surface, U0 ~ 0.3 ms-1

red = hot (200 Wm-2), blue = cold
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Tz-T0 over surface, U0~0.3 ms-1

Heated surface & heated elements Pd = 200 Wm-2
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Laboratory studies deserve higher priority in our research agenda. 
Simply making this point is a big challenge, however, in a time when we 
are so overwhelmingly occupied with numerical modeling and 
simulation 
 John Wyngaard 


